
190

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

INTRODUCTION

Security has become an important concern for all
computer users. Worms and hackers are a part of
everyday internet life. A particularly dangerous
attack is the code injection attack, where attackers
are able to insert code into the program’s address

space and can subsequently execute it. Programs
written in C are particularly vulnerable to such
attacks. Attackers can use a range of vulnerabilities
to inject code. The most well known and most ex-
ploited is of course the standard buffer overflow:
attackers write past the boundaries of a stack-based
buffer and overwrite the return address of a func-

Yves Younan
Katholieke Universiteit Leuven, Belgium

Wouter Joosen
Katholieke Universiteit Leuven, Belgium

Frank Piessens
Katholieke Universiteit Leuven, Belgium

Hans Van den Eynden
Katholieke Universiteit Leuven, Belgium

Improving Memory Management
Security for C and C++

ABSTRACT

Memory managers are an important part of modern language and are used to dynamically allocate
memory. Many managers exist; however, two major types can be identified: manual memory alloca-
tors and garbage collectors. In the case of manual memory allocators, the programmer must manually
release memory back to the system when it is no longer needed. Problems can occur when a program-
mer forgets to release it, releases it twice or uses freed memory. These problems are solved in garbage
collectors. However, both manual memory allocators and garbage collectors store management infor-
mation. This paper describes several vulnerabilities for C and C++ and how these could be remedied
by modifying the management information of a representative manual memory allocator and garbage
collector. Additionally, the authors present an approach that, when applied to memory managers, will
protect against these attack vectors.

DOI: 10.4018/978-1-4666-1580-9.ch011

191

Improving Memory Management Security for C and C++

tion and point it to their injected code. When the
function subsequently returns, the code injected
by the attackers is executed (Aleph One, 1996).

These are not the only kind of code injection
attacks though: a buffer overflow can also exist on
the heap, allowing an attacker to overwrite heap-
stored data. As pointers are not always available
in normal heap-allocated memory, attackers often
overwrite the management information that the
memory manager relies upon to function correctly.
A double free vulnerability, where a particular part
of heap-allocated memory is de-allocated twice
could also be used by an attacker to inject code.

Many countermeasures have been devised that
try to prevent code injection attacks (Younan,
Joosen, & Piessens, 2004). However most have fo-
cused on preventing stack-based buffer overflows
and only few have concentrated on protecting the
heap or memory allocators from attack.

In this paper we evaluate a commonly used
memory allocator and a garbage collector for C
and C++ with respect to their resilience against
code injection attacks and present a significant
improvement for memory managers in order to
increase robustness against code injection attacks.
Our prototype implementation (which we call
dnmalloc) comes at a very modest cost in both
performance and memory usage overhead.

This paper is an extended version of work
described in (Younan, Joosen, & Piessens, 2006)
which was presented in December 2006 at the
Eighth International Conference on Information
and Communication Security. The paper is struc-
tured as follows: section explains which vulner-
abilities can exist for heap-allocated memory.
Section describes how both a popular memory
allocator and a garbage collector can be exploited
by an attacker using one of the vulnerabilities of
section to perform code injection attacks. Section
describes our new more robust approach to han-
dling the management information associated with
chunks of memory. Section contains the results of
tests in which we compare our memory allocator

to the original allocator in terms of performance
overhead and memory usage. In section related
work in improving security for memory allocators
is discussed. Finally, section discusses possible
future enhancements and presents our conclusion.

HEAP-BASED VULNERABILITIES
FOR CODE INJECTION ATTACKS

There are a number of vulnerabilities that occur
frequently and as such have become a favorite
for attackers to use to perform code injection. We
will examine how different memory allocators
might be misused by using one of three common
vulnerabilities: “heap-based buffer overflows”,
“off by one errors” and “dangling pointer refer-
ences”. In this section we will describe what these
vulnerabilities are and how they could lead to a
code injection attack.

Heap-Based Buffer Overflow

Heap memory is dynamically allocated at run-
time by the application. Buffer overflow, which
are usually exploited on the stack, are also pos-
sible in this kind of memory. Exploitation of such
heap-based buffer overflows usually relies on
finding either function pointers or by performing
an indirect pointer attack (Bulba & Kil3r, 2000)
on data pointers in this memory area. However,
these pointers are not always present in the data
stored by the program in this memory. As such,
most attackers overwrite the memory management
information that the memory allocator stores in
or around memory chunks it manages. By modi-
fying this information, attackers can perform an
indirect pointer overwrite. This allows attackers
to overwrite arbitrary memory locations, which
could lead to a code injection attack (anonymous,
2001; Younan, 2003). In the following sections we
will describe how an attacker could use specific
memory managers to perform this kind of attack.

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/improving-memory-management-security/65849

Related Content

Formal Analysis of Database Trigger Systems Using Event-B
Anh Hong Le, To Van Khanhand Truong Ninh Thuan (2021). International Journal of Software Innovation

(pp. 158-173).

www.irma-international.org/article/formal-analysis-of-database-trigger-systems-using-event-b/268330

Lightweight and Secure Image Segmentation-Based Consensus Mechanism
Jianquan Ouyang, Jiajun Yinand Yuxiang Sun (2020). International Journal of Systems and Service-

Oriented Engineering (pp. 18-33).

www.irma-international.org/article/lightweight-and-secure-image-segmentation-based-consensus-mechanism/263786

Application Security for Mobile Devices
Gabriele Costa, Aliaksandr Lazouski, Fabio Martinelliand Paolo Mori (2015). Handbook of Research on

Innovations in Systems and Software Engineering (pp. 562-588).

www.irma-international.org/chapter/application-security-for-mobile-devices/117941

Towards Building a New Age Commercial Contextual Advertising System
James Miller, Abhimanyu Panwarand Iosif Viorel Onut (2017). International Journal of Systems and

Service-Oriented Engineering (pp. 1-14).

www.irma-international.org/article/towards-building-a-new-age-commercial-contextual-advertising-system/191311

A Service-Oriented Foundation for Big Data
Zhaohao Sun (2020). International Journal of Systems and Service-Oriented Engineering (pp. 1-17).

www.irma-international.org/article/a-service-oriented-foundation-for-big-data/263785

http://www.igi-global.com/chapter/improving-memory-management-security/65849
http://www.irma-international.org/article/formal-analysis-of-database-trigger-systems-using-event-b/268330
http://www.irma-international.org/article/lightweight-and-secure-image-segmentation-based-consensus-mechanism/263786
http://www.irma-international.org/chapter/application-security-for-mobile-devices/117941
http://www.irma-international.org/article/towards-building-a-new-age-commercial-contextual-advertising-system/191311
http://www.irma-international.org/article/a-service-oriented-foundation-for-big-data/263785

