
217

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

DOI: 10.4018/978-1-4666-1580-9.ch012

1. INTRODUCTION

It is somewhat ironic that users and organizations
hesitate to apply patches — whose stated purpose
is to support availability or reliability — precisely
because the process of doing so can lead to down-

time (both from the patching process itself as well
as unanticipated issues with the patch). Periodic
reboots in desktop systems — irrespective of the
vendor — are at best annoying. Reboots in en-
terprise environments (e.g., trading, e-commerce,
core network systems), even for a few minutes,

Sergey Bratus
Dartmouth College, USA

James Oakley
Dartmouth College, USA

Ashwin Ramaswamy
Dartmouth College, USA

Sean W. Smith
Dartmouth College, USA

Katana:
Towards Patching as a Runtime Part of
the Compiler-Linker-Loader Toolchain

ABSTRACT

The mechanics of hot patching (the process of upgrading a program while it executes) remain under-
studied, even though it offers capabilities that act as practical benefits for both consumer and mission-
critical systems. A reliable hot patching procedure would serve particularly well by reducing the
downtime necessary for critical functionality or security upgrades. However, hot patching also carries
the risk—real or perceived—of leaving the system in an inconsistent state, which leads many owners
to forgo its benefits as too risky; for systems where availability is critical, this decision may result in
leaving systems un-patched and vulnerable. In this paper, the authors present a novel method for hot
patching ELF binaries that supports synchronized global data and code updates, and reasoning about
the results of applying the hot patch. In this regard, the Patch Object format was developed to encode
patches as a special type of ELF re-locatable object file. The authors then built a tool, Katana, which
automatically creates these patch objects as a by-product of the standard source build process. Katana
also allows an end-user to apply the Patch Objects to a running process.

Michael E. Locasto
George Mason University, USA

218

Katana

imply large revenue loss — or require an extensive
backup and failover infrastructure with rolling
updates to mitigate such loss.

We question whether this de facto acceptance of
significant downtime and redundant infrastructure
should not be abandoned in favor of a reliable hot
patching process.

Software, the product of an inherently human
process, remains a flawed and incomplete artifact.
This reality leads to the uncomfortable inevitabil-
ity of future fixes, upgrades, and enhancements.
Given the way such fixes are currently applied (i.e.,
patch and reboot), developers accept downtime
as a foregone conclusion even as the software is
released — and deployers who resist downtime
resist the patches.

While patches themselves are a necessity, we
believe that the process of applying them remains
rather crude. First, the target process is terminated;
the new binary and corresponding libraries (if
any) are then written over the older versions; the
system is restarted if necessary; and finally the
upgraded application begins execution. Besides
the appreciable loss in uptime, all context held by
the application is also lost, unless the application
had saved its state to persistent storage (Candea
& Fox, 2003;Brown & Patterson, 2002) and later
restored it (which is expensive to design for, imple-
ment, and execute). In the case of mission-critical
services, even after a major flaw is unveiled and a
patch subsequently created, administrators must
choose between security (applying a patch) and
availability. This conundrum serves as our mo-
tivation for hot patching, without restarting the
program and losing state and time. We focus on
systems, such as those found in the cyber infra-
structure for the power grid, which require high
availability and which store significant state (that
would be lost on a restart).

Challenges of Patching

Requiring and encouraging the adoption of the
latest security patches is a matter of common
wisdom and prudent policy. It appears, however,

that this wisdom is routinely ignored in practice.
This disconnect suggests that we should look
for the reasons underlying users’ hesitancy to
apply patches, as these reasons might be due to
fundamental technical challenges that are not yet
recognized as such. We believe that the current
mechanics of applying patches prove to be just
such a stumbling block, and we contend that the
underlying challenges need to and can be addressed
in a fundamental manner by extending the core
elements of the ABI and the executable file format.

Mission-critical systems seem hardest to patch.
They can ill afford downtime, and the owner may
be reluctant to patch due to the real or perceived
risk of the patch breaking essential functionality.
For example, patching a component of a distributed
system might lead to a loss or corruption of state
for the entire system. An administrator might also
suspect that the patch is incompatible with some
legacy parts of the system. Even so, the patch may
target a latent vulnerability in a software feature
that is not now in active use, but also cannot be
easily made unreachable via configuration or
module unloading. The administrator is forced
to accept a particularly thorny choice: inaction
holds as much risk as a proactive “responsible”
approach. Since the risks of patching must be
weighed against those of staying un-patched, we
seek to shift the balance of this decision toward
hot patching by making it not only possible, but
also less risky in a broad range of circumstances.
We contend that this can only be done through
good engineering and making patching a part of
the standard toolchain.

Our key observation is that current binary
patches, whether “hot” or static, are almost entirely
opaque and do not support any form of reasoning
about the impact of the patch (short of reverse en-
gineering both the patch and the targeted binary).
In particular, it is hard for the software owner to
find out whether and how a patch would affect
any particular subsystem in any other way than
applying the patch on a test system and trying it
out, somehow finding a way to faithfully replicate
the conditions of the production environment.

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/katana-towards-patching-runtime-part/65850

Related Content

Improving Cost for Data Migration in Cloud Computing Using Genetic Algorithm
Nitin Chawla, Deepak Kumarand Dinesh Kumar Sharma (2020). International Journal of Software

Innovation (pp. 69-81).

www.irma-international.org/article/improving-cost-for-data-migration-in-cloud-computing-using-genetic-algorithm/256237

Evaluation Methods for E-Learning Applications in Terms of User Satisfaction and Interface

Usability
Nouzha Harrati, Imed Bouchrika, Zohra Mahfoufand Ammar Ladjailia (2018). Application Development and

Design: Concepts, Methodologies, Tools, and Applications (pp. 756-777).

www.irma-international.org/chapter/evaluation-methods-for-e-learning-applications-in-terms-of-user-satisfaction-and-

interface-usability/188233

Autonomous Communication Model for Internet of Things
Sergio Ariel Salinas (2021). Handbook of Research on Software Quality Innovation in Interactive Systems

(pp. 252-266).

www.irma-international.org/chapter/autonomous-communication-model-for-internet-of-things/273572

Enhanced Frequent Itemsets Based on Topic Modeling in Information Filtering
Than Than Waiand Sint Sint Aung (2017). International Journal of Software Innovation (pp. 33-43).

www.irma-international.org/article/enhanced-frequent-itemsets-based-on-topic-modeling-in-information-filtering/187170

A Generic Architectural Model Approach for Efficient Utilization of Patterns: Application in the

Mobile Domain
Jouni Markkulaand Oleksiy Mazhelis (2015). Handbook of Research on Innovations in Systems and

Software Engineering (pp. 682-709).

www.irma-international.org/chapter/a-generic-architectural-model-approach-for-efficient-utilization-of-patterns/117945

http://www.igi-global.com/chapter/katana-towards-patching-runtime-part/65850
http://www.irma-international.org/article/improving-cost-for-data-migration-in-cloud-computing-using-genetic-algorithm/256237
http://www.irma-international.org/chapter/evaluation-methods-for-e-learning-applications-in-terms-of-user-satisfaction-and-interface-usability/188233
http://www.irma-international.org/chapter/evaluation-methods-for-e-learning-applications-in-terms-of-user-satisfaction-and-interface-usability/188233
http://www.irma-international.org/chapter/autonomous-communication-model-for-internet-of-things/273572
http://www.irma-international.org/article/enhanced-frequent-itemsets-based-on-topic-modeling-in-information-filtering/187170
http://www.irma-international.org/chapter/a-generic-architectural-model-approach-for-efficient-utilization-of-patterns/117945

