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INTRODUCTION

Cellular automata (CA) can be viewed as comput-
ing devices, which take as an input some initial 
configuration. The CA rule is iterated a number of 
times starting from this configuration, resulting in 

a final configuration, which constitutes the output 
of the computation. If the CA rule is complex, 
the above computation may be very difficult to 
characterize, let alone understand in detail. If one 
considers “simple” CA rules, however, one can 
say quite a lot about the process, as we shall see 
in what follows.
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ABSTRACT

In this paper, the authors consider the problem of computing a response curve for binary cellular au-
tomata, that is, the curve describing the dependence of the density of ones after many iterations of the 
rule on the initial density of ones. The authors demonstrate how this problem could be approached using 
rule 130 as an example. For this rule, preimage sets of finite strings exhibit recognizable patterns; there-
fore, it is possible to compute both cardinalities of preimages of certain finite strings and probabilities 
of occurrence of these strings in a configuration obtained by iterating a random initial configuration n 
times. Response curves can be rigorously calculated in both one- and two-dimensional versions of CA 
rule 130. The authors also discuss a special case of totally disordered initial configurations, that is, 
random configurations where the density of ones and zeros are equal to 1/2.
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In many practical problems, e.g., in mathe-
matical modelling, one wants to know how a CA 
rule iterated over an initial configuration affects 
certain aggregate properties of the configuration, 
such as, for example, the density of ones. If we 
take a randomly generated initial configuration 
with a given density of ones, and iterate a given 
rule n times over this configuration, what is the 
density of ones in the resulting configuration? 
Using signal processing terminology, we want to 
know the “response curve”, density of the output 
as a function of the density of the input. Response 
curves appear in computational problems, and a 
classical example of such a problem in CA theo-
ry is the so-called density classification problem 
(DCP). If we denote the density of ones in the 
configuration at time n by cn , the DCP asks us 
to find a rule for which c∞ = 1  if c0 1 2> /  and 
c∞ = 0  if c0 1 2< /  - that is, CA rule with den-
sity response curve in a form of a step function. 
Since it is known that such a rule does not exist 
(Land and Belew, 1995), once could ask a related 
general question: which response curves are pos-
sible in CA rules? Obviously, this problem is much 
more difficult than DCP, and not much is known 
about it. We propose to approach this problem 
from an opposite direction: given the CA rule, 
what can we say about its response curve? It turns 
out that in surprisingly many cases, the response 
curve can be calculated exactly, providing that 
preimage sets of finite strings under the CA rule 
exhibit recognizable patters. We will demonstrate 
this technique using as an example elementary 
CA rule 130, in both one- and two-dimensional 
spaces.

BASIC DEFINITIONS

Let  = { , }0 1  be called a symbol set, and let 
S N( )  be the set of all bisequences over  , 
where by a bisequence we mean a function on Z  

to  . Throughout the remainder of this text the 
configuration space S N( ) { , }= 0 1 Z  will be 
simply denoted by  .

A block of length n  is an ordered set
b b bn0 1 1… − , where n N∈ , bi ∈  . Let n N∈  
and let n  denote the set of all blocks of length 
n  over   and   be the set of all finite blocks 
over  .

For r N∈ , a mapping f r: { , } { , }0 1 0 12 1+
  

will be called a cellular automaton rule of radius 
r . Alternatively, the function f can be considered 
as a mapping of 2 1r+  into B N0 0 1= = { , } .

Corresponding to f (also called a local map-
ping) we define a global mapping F :  →  
such that ( ( )) ( , , , , )F s f s s si i r i i r= … …− +  for any 
s ∈  . The composition of two rules f g,  can be 
now defined in terms of their corresponding 
g l o b a l  m a p p i n g s  F  a n d  G  a s 
( )( ) ( ( )),F G s F G s =  where s ∈  .

A block evolution operator corresponding to 
f is a mapping f :    defined as follows. Let 
r N∈  be the radius of f, and let a a a an n= … ∈−0 1 1   
where n r≥ + >2 1 0 . Then

f( ) { ( , , , )} .a f a a ai i i r i
n r= …+ + =
− −

1 2 0
2 1  (1)

Note that if b B r∈ +2 1  then f b b( ) ( )= f .
We will consider the case of  = { , }0 1  and 

r = 1  rules, i.e., elementary cellular automata. 
In this case, when b ∈ 3�,  then f b b( ) = ( )f .�The 
set 3 000 001 010 011 100 101 110 111= { , , , , , , , }  
will be called the set of basic blocks.

The number of n-step preimages of the block 
b under the rule f is defined as the number of 
elements of the set f−n b( ) . Given an elementary 
rule f, we will be especially interested in the 
number of n-step preimages of basic blocks under 
the rule f.

As mentioned in the introduction, we will use as 
an example rule 130 (using Wolfram’s numbering 
scheme) with local function defined as
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