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INTRODUCTION

Drawing important ideas from several sources, - the idea of associative memory from psychology (Kohonen, 
1977), the idea of Hebbian adaptation from neurophysiology (Hebb, 1949), the idea of neuron as a thresholding 
device from prior modeling work (McCulloch & Pitts, 1943) etc., - Hopfield presented an elegant model of asso-
ciative memory storage and retrieval in the brain (Hopfield, 1982; Hopfield, 1984). Most importantly, an original 
contribution of the Hopfield model is the suggestion that memories correspond to attractors of neural network 
dynamics. This essential insight has helped to create a whole class of “neural memories.”  

Since memories, by their very nature, must have certain stability, and there must be mechanisms for storage 
and retrieval of the same, it is reasonable to think of memories as attractors of brain dynamics.  There is also some 
experimental evidence towards that end. But where experimental data differs from Hopfield’s model memories 

Abstract

This chapter describes Complex Hopfield Neural Network (CHNN), a complex-variable version of the Hopfield 
neural network, which can exist in both fixed point and oscillatory modes. Memories can be stored by a complex 
version of Hebb’s rule. In the fixed-point mode, CHNN is similar to a continuous-time Hopfield network. In the 
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performance. It is shown how the intrinsic chaos in CHNN can be used as a mechanism for “annealing” when the 
network is used for solving quadratic optimization problems. The network’s applicability to chaotic synchroniza-
tion is described.
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is that brain memories are not fixed point attractors, the way Hopfield’s memories are.  For example, work done 
by Freeman and his group with mammalian olfactory cortex revealed that odors are stored as oscillatory states 
(Skarda & Freeman, 1987). Synchronization, an important phenomenon related to oscillations plays a significant 
role in information processing in the brain. It has been suggested that oscillations in visual cortex may provide 
an explanation for the binding problem (Gray & Singer, 1989). This result has come as experimental support to 
Malsburg’s labeling hypothesis (von der Malsburg, 1988), which postulates that neural information processing 
is intimately related to the temporal relationships between the phase- and/or frequency-based “labels” of oscil-
lating cell assemblies. All these phenomena cannot be captured by neural models that exhibit only fixed-point 
behavior. 

Neural models in which memories can be stored as oscillations have been proposed before. Abbot (1990) 
studied a network of oscillating neurons in which binary patterns can be stored as phase relationships between 
individual oscillators. The Hopfield model too can exhibit limit cycles and chaos but only when the symmetry 
condition on weights is relaxed (Sompolinsky, Crisanti & Sommers, 1988; Albers, Sprott, & Dechert,  1998).  
When the symmetry condition is violated, the Hebb’s rule for storing patterns is no more valid in general, except 
in special cases like storing short sequences.  

BACKGROUND
	

It has been shown that by extending Hopfield’s real-valued model to complex –variable domain, it is possible to 
preserve the symmetric Hebbian synapses, while permitting the network to have oscillatory states (Chakravarthy 
& Ghosh, 1996).  Pioneering work on complex-valued versions of Hopfield network was done by Hirose (1992). 
Other studies in the area of complex neural networks include complex backpropagation algorithm for training 
complex feedforward networks (Leung & Haykin, 1991; Nitta, 1997) and a similar extension for complex-valued 
recurrent neural networks (Mandic & Goh, 2004). For a comprehensive review of complex neural models the 
reader may consult (Hirose, 2003).

	 In the present chapter, we discuss the properties and applications of a particular complex neural network 
model viz., the complex Hopfield neural network (CHNN). The chapter is organized as follows. We begin with a 
brief review of the original real-valued Hopfield network, which is followed by a plausible biological interpreta-
tion of the complex state of a neuron in the next Section. The model equations of CHNN are presented in the 
subsequent Section, which is followed by a Section that presents learning mechanisms. Learning can be a one-shot 
affair where the weights are pre-calculated by a complex Hebb’s rule. Or learning can occur continuously, with 
weight update described by differential equations. The following section describes the two modes in which the 
proposed network operates: 1) fixed point mode and 2) oscillatory mode. In the subsequent two sections, associative 
memory function of CHNN in the two modes is described. It will be shown that memory capacity of the network 
in oscillatory mode is very poor. However, it will be also shown, in the subsequent Section, that by allowing 
the weights to adapt dynamically, even during retrieval, memory capacity can be enhanced significantly even 
in the oscillatory mode. The next Section presents an electronic realization of the model. The following Section 
describes application of CHNN for quadratic optimization. The chaotic dynamics of the network in oscillatory 
mode is exploited as a mechanism for avoiding getting stuck in a local minimum. An application of CHNN for 
chaotic synchronization useful for secure communications is discussed in the following Section. An overview 
of the work and challenges for future are discussed in the final Section. 

THE REAL-VALUED HOPFIELD NETWORK

In a landmark paper, Hopfield (1982) proposed a neural network implementation of an associative memory in 
which binary patterns can be stored and retrieved. The McCulloch-Pitts (McCulloch & Pitts, 1943) binary neuron 
is used in this network. In the Hopfield’s neural network each neuron is connected to every other neuron through 
weights T = { Tjk }, where Tjk is the weight connecting j’th and k’th neuron. Each neuron receives inputs from all 



 

 

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/complex-valued-hopfield-neural-network/6765

Related Content

Flexible Blind Signal Separation in the Complex Domain
Michele Scarpiniti, Daniele Vigliano, Raffaele Parisiand Aurelio Uncini (2009). Complex-Valued Neural

Networks: Utilizing High-Dimensional Parameters  (pp. 284-323).

www.irma-international.org/chapter/flexible-blind-signal-separation-complex/6773

Artificial Neural Networks in Manufacturing: Scheduling
George A. Rovithakis, Stelios E. Perrakisand Manolis A. Christodoulou (2006). Artificial Neural Networks in

Finance and Manufacturing (pp. 236-261).

www.irma-international.org/chapter/artificial-neural-networks-manufacturing/5359

An Efficient Random Valued Impulse Noise Suppression Technique Using Artificial Neural

Network and Non-Local Mean Filter
Bibekananda Jena, Punyaban Pateland G.R. Sinha (2022). Research Anthology on Artificial Neural

Network Applications (pp. 1157-1173).

www.irma-international.org/chapter/an-efficient-random-valued-impulse-noise-suppression-technique-using-artificial-

neural-network-and-non-local-mean-filter/289005

Avatar-Based and Automated Testing System for Quality Control of Student Training: Using

Neuron Natural and Artificial Technology Platform Triple H
Mikhail Kataev, Vardan Mkrttchian, Larisa Bulyshevaand Anatoly Korikov (2020). Avatar-Based Control,

Estimation, Communications, and Development of Neuron Multi-Functional Technology Platforms (pp. 212-

230).

www.irma-international.org/chapter/avatar-based-and-automated-testing-system-for-quality-control-of-student-

training/244794

Recurrent Higher Order Neural Observers for Anaerobic Processes
Edgar N. Sanchez, Diana V. Urrego, Alma Y. Alanisand Salvador Carlos-Hernandez (2010). Artificial

Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications

(pp. 333-365).

www.irma-international.org/chapter/recurrent-higher-order-neural-observers/41674

http://www.igi-global.com/chapter/complex-valued-hopfield-neural-network/6765
http://www.irma-international.org/chapter/flexible-blind-signal-separation-complex/6773
http://www.irma-international.org/chapter/artificial-neural-networks-manufacturing/5359
http://www.irma-international.org/chapter/an-efficient-random-valued-impulse-noise-suppression-technique-using-artificial-neural-network-and-non-local-mean-filter/289005
http://www.irma-international.org/chapter/an-efficient-random-valued-impulse-noise-suppression-technique-using-artificial-neural-network-and-non-local-mean-filter/289005
http://www.irma-international.org/chapter/avatar-based-and-automated-testing-system-for-quality-control-of-student-training/244794
http://www.irma-international.org/chapter/avatar-based-and-automated-testing-system-for-quality-control-of-student-training/244794
http://www.irma-international.org/chapter/recurrent-higher-order-neural-observers/41674

