
137

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-4666-2056-8.ch008

Ning Gui
University of Antwerp, Belgium

Vincenzo De Florio
University of Antwerp, Belgium

Chris Blondia
University of Antwerp, Belgium

Run-Time Compositional
Software Platform for

Autonomous NXT Robots

ABSTRACT

Autonomous Robots normally perform tasks in unstructured environments, with little or no continu-
ous human guidance. This calls for context-aware, self-adaptive software systems. This paper aims at
providing a flexible adaptive middleware platform to seamlessly integrate multiple adaptation logics
during the run-time. To support such an approach, a reconfigurable middleware system “ACCADA”
was designed to provide compositional adaptation. During the run-time, context knowledge is used to
select the most appropriate adaptation modules so as to compose an adaptive system best-matching the
current exogenous and endogenous conditions. Together with a structure modeler, this allows robotic
applications’ structure to be autonomously (re)-constructed and (re)-configured. This paper applies this
model on a Lego NXT robot system. A remote NXT model is designed to wrap and expose native NXT
devices into service components that can be managed during the run-time. A dynamic UI is implemented
which can be changed and customized according to system conditions. Results show that the framework
changes robot adaptation behavior during the run-time.

138

Run-Time Compositional Software Platform for Autonomous NXT Robots

INTRODUCTION

Autonomous robots can perform their intended
tasks in unstructured environments without (or
with minimal) human guidance. An autonomous
robot may also learn or gain new capabilities like
adjusting strategies for accomplishing its task(s)
or adapting to changing surroundings. Such a high
degree of autonomy is particularly desirable in
fields such as space exploration, cleaning floors,
mowing lawns, and waste water treatment.

A basic concept that is applied in autonomous
robot control is the closed control loop. Each
autonomic system consists of managed resources
(controllable hardware or software components)
and an autonomic manager for steering the under-
lying managed resources. Normally, this system
includes automated methods to collect the details
it needs from the system (Sensor); to analyze those
details and determine if something needs to change
(Analyzer); to create a plan, or sequence of actions,
that specifies the necessary changes (Planner); and
to perform those actions (Actuator). As we can
see, in such system, Analyzer and Planner play a
key role in such a control loop. These adaptation
modules can greatly influence robot adaptation
behavior. Several approaches have been proposed
to provide a more flexible adaptation strategy –
examples include (Hashimoto, Kojima, & Kubota,
2003), which uses evolutionary computation
and fuzzy systems, or (Inamura, Inaba, & Inoue,
2000), using Bayesian networks. However, these
works focused on designing certain adaptability
algorithms for autonomous robots. Their control
logics are statically linked and mingled with other
system modules such as sensors and actuators. This
static nature makes it very hard for autonomous
robots to change their adaptation strategies. Most
of these approaches can only effectively adapt
within certain known environments or under
certain predefined conditions.

A typical example is given by the Nasa Mars
Rovers (Jet Propulsion Laboratory, n. d.). These
robots, 170 to 320 million kilometers away from
the Earth, are able to receive and send quite some

information, either directly or via the Mars Orbiter
(satellite around Mars). However, the downside
of this communication is that their latency is very
high (about 20 minutes), which obviously means
that the robots cannot be remotely controlled. To
perform their mission for NASA these robots had
a software system that ran over a list of actions
that were uploaded during the communication
moment. A problem with this software is the
static nature of its software platform. When the
software needs an update to fix some problem or
when some new features are needed to face un-
precedented conditions, the robot software needs
to be completely replaced.

The work described in this paper applies a
new approach to implementing the adaptation
loop in autonomous robot systems. In a nutshell,
our architecture model realizes an adaptation loop
which can be run-time revised so as to better match
the current context. This strategy allows the ap-
plication configuration to be modified outside of
the application business logics. In order to deal
with changing environments or/and robot status,
our adaptation framework is designed to system-
atically support multiple adaptation logics. An
adaptation plan is generated by run-time selected
adaptation modules according to context to date.
Robot applications, built from individual compo-
nent instances, are composed and reconfigured by
these run-time generated policies. This work is
based on our ACCADA framework proposed in
(Gui, De Florio, Sun, & Blondia, 2009b).

In order to seamlessly integrate the NXT robot
into the ACCADA framework, a remote NXT
model is designed to expose native NXT sensors
and actuators as run-time manageable components.
This remote NXT model allows future more ad-
vanced sensors/actuators to be easily plugged into
our framework. Our modular middleware solution
can effectively support adding/removing context-
specific Planners during run-time, selecting the
right adaptation Planner according to context by
e.g. using a battery oriented adaptation scenario.
Other adaptation strategies, such as fault-tolerant
adaptation, can be injected into the system during

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/run-time-compositional-software-platform/68948

Related Content

A Recovery-Oriented Approach for Software Fault Diagnosis in Complex Critical Systems
Gabriella Carrozzaand Roberto Natella (2013). Innovations and Approaches for Resilient and Adaptive

Systems (pp. 29-56).

www.irma-international.org/chapter/recovery-oriented-approach-software-fault/68942

Ant Colony Algorithms for Data Learning
Mohamed Hamlichand Mohammed Ramdani (2013). International Journal of Applied Evolutionary

Computation (pp. 1-10).

www.irma-international.org/article/ant-colony-algorithms-for-data-learning/95954

Modularity and Complex Adaptive Systems
David Cornforthand David G. Green (2008). Intelligent Complex Adaptive Systems (pp. 75-104).

www.irma-international.org/chapter/modularity-complex-adaptive-systems/24184

Exploring the Enterprise Value of Wikis through Media Choice Theories
Christian Wagner, Andreas Schroeder, Wing Wongand Anna Shum (2012). Systems Approaches to

Knowledge Management, Transfer, and Resource Development (pp. 216-227).

www.irma-international.org/chapter/exploring-enterprise-value-wikis-through/68220

Synthesis of Controllers for MIMO Systems with Time Response Specifications
Maher Ben Hariz, Wassila Chagraand Faouzi Bouani (2014). International Journal of System Dynamics

Applications (pp. 25-52).

www.irma-international.org/article/synthesis-of-controllers-for-mimo-systems-with-time-response-specifications/117673

http://www.igi-global.com/chapter/run-time-compositional-software-platform/68948
http://www.irma-international.org/chapter/recovery-oriented-approach-software-fault/68942
http://www.irma-international.org/article/ant-colony-algorithms-for-data-learning/95954
http://www.irma-international.org/chapter/modularity-complex-adaptive-systems/24184
http://www.irma-international.org/chapter/exploring-enterprise-value-wikis-through/68220
http://www.irma-international.org/article/synthesis-of-controllers-for-mimo-systems-with-time-response-specifications/117673

