
113

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-4666-2482-5.ch007

1. INTRODUCTION

With today’s market globalization of software
development and the proliferation of malicious
attackers, it is becoming almost impossible to have
any trust in the software that is loaded onto our

systems. Rogue applications, or applications in
which code has been added, modified or removed
with the intent of causing harm or subverting a
system’s intended function (McGraw & Morrisett,
2000), are becoming more and more prevalent.
To combat these infiltrations, consumers, as well

Jan Durand
Louisiana Tech University, USA

Juan Flores
Louisiana Tech University, USA

Nicholas Kraft
University of Alabama, USA

Randy Smith
University of Alabama, USA

Using Executable Slicing to
Improve Rogue Software

Detection Algorithms

ABSTRACT

This paper describes a research effort to use executable slicing as a pre-processing aid to improve the
prediction performance of rogue software detection. The prediction technique used here is an information
retrieval classifier known as cosine similarity that can be used to detect previously unknown, known or
variances of known rogue software by applying the feature extraction technique of randomized projec-
tion. This paper provides direction in answering the question of is it possible to only use portions or
subsets, known as slices, of an application to make a prediction on whether or not the software contents
are rogue. This research extracts sections or slices from potentially rogue applications and uses these
slices instead of the entire application to make a prediction. Results show promise when applying ran-
domized projections to cosine similarity for the predictions, with as much as a 4% increase in prediction
performance and a five-fold decrease in processing time when compared to using the entire application.

Travis Atkison
Louisiana Tech University, USA

114

Using Executable Slicing to Improve Rogue Software Detection Algorithms

as corporations, are turning to anti-virus software
products, which contain virus detection engines.
Though very good at what they do, virus detec-
tion engines rely on a database of signatures to
detect known rogue applications. Signature based
systems inherently limit the detection of new
and previously unknown types of rogue attacks.
To that end there have been several research at-
tempts to overcome these limitations. In one of
these attempts (Atkison, 2009) we have shown the
value of using randomized projection algorithms
in detecting malicious applications.

The purpose of this paper is to provide meth-
ods and techniques to overcome the limitations
inherent in the signature-based systems men-
tioned above. Through this research effort, we
will provide a methodology for detecting rouge
applications by enhancing the random projec-
tion, dimensionality reduction concept by using
executable slicing. Executable slicing is a strategic
method of compartmentalizing applications, and
is used as a pre-processor to the algorithm. It will
be shown that by adding this pre-processing step
a significant gain in accuracy as well as in preci-
sion and recall can be achieved.

The following section provides a background
description of previous methods that involve static
analysis, information retrieval and randomized
projection. In Section 3, the experimental design
of this work is discussed including software and
data used. In Section 4, results achieved are de-
scribed. Finally, in Section 5 the conclusion and
future directions are presented.

2. BACKGROUND

Developing effective potential solutions to the
malicious software detection problem is an impor-
tant direction in host security research. There have
been few research papers, (Kang, Poosankam, &
Yin, 2007; Perdisci, Lanzi, & Lee, 2008) are good
examples, that pose the option of executable slic-
ing while looking at malicious detection. Though

their focus is directed toward packed executables,
the focus of this paper is to show that statically
analyzing sections or slices of an executable will
improve prediction rates of non-packed, stand-
alone executables. It is important to understand
the methods and techniques that are used for these
predictions. Since the randomized projection tech-
nique in this solution is used in conjunction with
an information retrieval prediction algorithm we
will include a small background on information
retrieval as well as static analysis.

2.1. Static Analysis

Static analysis, sometimes referred to as static
program analysis or static code analysis, is the
examination of the source or object code of an
application in order to identify patterns that
indicate potential design errors and/or security
threats (Food and Drug Administration [FDA],
2010). This analysis approach eliminates the need
to execute an application in order to determine
its behavior, contrary to its counter-part dynamic
analysis, thus avoiding the potential compromise
of the host system.

Static analysis has proven to be a very useful
tool in detecting undesirable or vulnerable code
in applications. There have been several research
efforts such as (Bergeron, et al., 2001; Bergeron,
Debbabi, Erhioui, & Ktari, 1999; Christodorescu
& Jha, 2003; FDA, 2010; Jovanovic, Kruegel,
& Kirda, 2006) that have incorporated the use
of static analysis to detect malicious code in
executable files.

Christodorescu et al. (2003) presented a static
analysis framework for identifying malicious code
patterns in executables and implemented SAFE, a
static analyzer for executables. In their research,
they show that SAFE is resilient to common ob-
fuscation transformations on malicious code while
three popular anti-virus scanners were susceptible
to these attacks (Christodorescu & Jha, 2003).

Bergeron et al. (1999, 2001) present a three-step
approach for detecting malicious code in applica-

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/using-executable-slicing-improve-rogue/72201

Related Content

Impact of Fault-Prone Components on Effective Software Testing: An Industrial Survey
D. Jeya Malaand A. Jalila (2015). International Journal of Systems and Service-Oriented Engineering (pp.

38-51).

www.irma-international.org/article/impact-of-fault-prone-components-on-effective-software-testing/134433

A Graph Transformation Approach for Modeling UML Diagrams
Hiba Hachichi (2022). International Journal of Systems and Service-Oriented Engineering (pp. 1-17).

www.irma-international.org/article/a-graph-transformation-approach-for-modeling-uml-diagrams/300782

Towards an Integrated Personal Software Process and Team Software Process Supporting Tool
Ho-Jin Choi, Sang-Hun Lee, Syed Ahsan Fahmi, Ahmad Ibrahim, Hyun-Il Shinand Young-Kyu Park (2012).

Software Process Improvement and Management: Approaches and Tools for Practical Development (pp.

205-223).

www.irma-international.org/chapter/towards-integrated-personal-software-process/61216

Construction of Lightweight Big Data Experimental Platform Based on Dockers Container
Youli Ren (2020). International Journal of Information System Modeling and Design (pp. 100-113).

www.irma-international.org/article/construction-of-lightweight-big-data-experimental-platform-based-on-dockers-

container/259391

Multi-Class Plant Leaf Disease Detection Using a Deep Convolutional Neural Network
Shriya Jadhavand Anisha M. Lal (2022). International Journal of Information System Modeling and Design

(pp. 1-14).

www.irma-international.org/article/multi-class-plant-leaf-disease-detection-using-a-deep-convolutional-neural-

network/315126

http://www.igi-global.com/chapter/using-executable-slicing-improve-rogue/72201
http://www.irma-international.org/article/impact-of-fault-prone-components-on-effective-software-testing/134433
http://www.irma-international.org/article/a-graph-transformation-approach-for-modeling-uml-diagrams/300782
http://www.irma-international.org/chapter/towards-integrated-personal-software-process/61216
http://www.irma-international.org/article/construction-of-lightweight-big-data-experimental-platform-based-on-dockers-container/259391
http://www.irma-international.org/article/construction-of-lightweight-big-data-experimental-platform-based-on-dockers-container/259391
http://www.irma-international.org/article/multi-class-plant-leaf-disease-detection-using-a-deep-convolutional-neural-network/315126
http://www.irma-international.org/article/multi-class-plant-leaf-disease-detection-using-a-deep-convolutional-neural-network/315126

