
225

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  13

DOI: 10.4018/978-1-4666-2482-5.ch013

1. INTRODUCTION

Security protocols are distributed algorithms 
that run over untrusted networks with the aim 
of achieving security goals, such as mutual au-
thentication of two protocol parties. In order to 
achieve such goals, security protocols typically 
use cryptography.

It is well known that despite their apparent 
simplicity it is quite difficult to design security 
protocols right, and it may be quite difficult to 
find out all the subtle flaws that affect a given 
protocol logic. Research on this topic has led to the 
development of specialized formal methods that 
can be used to rigorously reason about protocol 
logic and to prove that it does really achieve its 

Matteo Avalle
Politecnico di Torino, Italy

Alfredo Pironti
INRIA, France

Davide Pozza
Teoresi Group, Italy

Riccardo Sisto
Politecnico di Torino, Italy

JavaSPI:
A Framework for Security 
Protocol Implementation

ABSTRACT

This paper presents JavaSPI, a “model-driven” development framework that allows the user to reliably 
develop security protocol implementations in Java, starting from abstract models that can be verified 
formally. The main novelty of this approach stands in the use of Java as both a modeling language and 
the implementation language. The JavaSPI framework is validated by implementing a scenario of the 
SSL protocol. The JavaSPI implementation can successfully interoperate with OpenSSL, and has com-
parable execution time with the standard Java JSSE library.



226

JavaSPI

intended goals under certain assumptions (e.g., 
Blanchet, 2009).

One problem that remains with this solution is 
the gap that exists between the abstract protocol 
model that is formally analyzed and its concrete 
implementation written in a programming lan-
guage. The latter may be quite different from the 
former, thus breaking the validity of the formal 
verification when the final implementation is 
considered.

In order to solve this problem two approaches 
have been proposed. On one hand, model extrac-
tion techniques (e.g., O’Shea, 2008; Bhargavan, 
Fournet, Gordon, & Tse, 2008; Backes, Maffei, & 
Unruh, 2010; Chaki & Datta, 2009), automatically 
extract an abstract protocol model that can be veri-
fied formally, starting from the code of a protocol 
implementation. On the other hand, code genera-
tion model-driven techniques (e.g., Pironti & Sisto, 
2007; Kiyomoto, Ota, & Tanaka, 2008; Almeida, 
Bangerter, Barbosa, Krenn, Sadeghi, & Schneider, 
2010; Bhargavan, Corin, Deniélou, Fournet, & 
Leifer, 2009; Balser, Reif, Schellhorn, Stenzel, 
& Thums, 2000; Song, Perrig, & Phan, 2001), 
automatically generate a protocol implementation, 
starting from a formally verified abstract model. 
In either case, if the automatic transformation is 
formally guaranteed to be sound, it is possible to 
extend the results of formal verification done on 
the abstract protocol model to the corresponding 
implementation code.

Model-driven development (MDD) offers the 
advantage of hiding the complexity of a full imple-
mentation during the design phase, because the 
developer needs only focus on a simplified abstract 
model. Moreover, since the implementation code 
is automatically generated, it is possible to make 
it immune from some low-level programming 
errors, such as memory leakages, that could make 
the program vulnerable in some cases but that are 
not represented in abstract models.

However, MDD usually requires a high level 
of expertise, which limits its adoption, because 
formal languages used for abstract protocol mod-

els are generally not known by code developers, 
and quite different from common programming 
languages. For example, the user needs to know 
the formal spi calculus language in order to prop-
erly work with the Spi2Java framework (Pironti 
& Sisto, 2007).

Our motivation is to solve this problem and 
make MDD approaches more affordable. To 
achieve this, our contribution is the proposal of 
a new framework, based on Spi2Java, called Ja-
vaSPI (http://typhoon5.polito.it/javaspi/), where 
the abstract protocol model is itself an executable 
Java program.

This little but significant difference grants 
several different improvements over frameworks 
like Spi2Java:

• It is not necessary to learn a new complete-
ly different modeling language anymore 
(Java is also used as a modeling language);

• Standard Java Integrated Development 
Environments (ides), to which the pro-
grammer is already familiar, can be used to 
develop the security protocol model like it 
was a plain Java program, making full use 
of IDE features such as code completion, 
or live compilation;

• It is possible to debug (or simulate) the 
abstract model using the same debuggers 
Java programmers are used to;

• Thanks to Java annotations, information 
about low-level implementation choices 
and security properties can be neatly em-
bedded into the abstract model.

The viability of the proposed approach is 
validated by a case study where interoperable 
client and server sides of a specific SSL scenario 
are implemented. The interoperability capabili-
ties are demonstrated by running alternatively 
the client and the server against the OpenSSL 
0.98o corresponding implementations, while the 
performances of the generated code are compared 



 

 

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/javaspi-framework-security-protocol-

implementation/72207

Related Content

Usable Security and Privacy on Online Social Networks: Tools, Approaches, Studies, and Future

Trends
Khalid Alemerien (2021). International Journal of Software Innovation (pp. 35-68).

www.irma-international.org/article/usable-security-and-privacy-on-online-social-networks/277214

Trends in Improving Performances in Distributed Database Management Systems
Ismail Omar Hababehand Muthu Ramachandran (2010). Handbook of Research on Software Engineering

and Productivity Technologies: Implications of Globalization  (pp. 396-422).

www.irma-international.org/chapter/trends-improving-performances-distributed-database/37045

Trusting Computers Through Trusting Humans: Software Verification in a Safety-Critical

Information System
Alison Adamand Paul Spedding (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications  (pp. 2760-2774).

www.irma-international.org/chapter/trusting-computers-through-trusting-humans/29533

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications
W. K. Chan, S. C. Cheungand Karl R.P.H. Leung (2009). Software Applications: Concepts, Methodologies,

Tools, and Applications  (pp. 2894-2914).

www.irma-international.org/chapter/metamorphic-testing-approach-online-testing/29542

Evaluation of Determinants of Software Quality in Offshored Software Projects: Empirical

Evidences From India
Ganesan Kannabiranand K. Sankaran (2022). Research Anthology on Agile Software, Software

Development, and Testing (pp. 1857-1883).

www.irma-international.org/chapter/evaluation-of-determinants-of-software-quality-in-offshored-software-projects/294548

http://www.igi-global.com/chapter/javaspi-framework-security-protocol-implementation/72207
http://www.igi-global.com/chapter/javaspi-framework-security-protocol-implementation/72207
http://www.irma-international.org/article/usable-security-and-privacy-on-online-social-networks/277214
http://www.irma-international.org/chapter/trends-improving-performances-distributed-database/37045
http://www.irma-international.org/chapter/trusting-computers-through-trusting-humans/29533
http://www.irma-international.org/chapter/metamorphic-testing-approach-online-testing/29542
http://www.irma-international.org/chapter/evaluation-of-determinants-of-software-quality-in-offshored-software-projects/294548

