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ABSTRACT

This paper examines the inherited persistent behavior of particle swarm optimization and its implica-
tions to cognitive machines. The performance of the algorithm is studied through an average particle’s 
trajectory through the parameter space of the Sphere and Rastrigin function. The trajectories are decom-
posed into position and velocity along each dimension optimized. A threshold is defined to separate the 
transient period, where the particle is moving towards a solution using information about the position of 
its best neighbors, from the steady state reached when the particles explore the local area surrounding 
the solution to the system. Using a combination of time and frequency domain techniques, the inherited 
long-term dependencies that drive the algorithm are discerned. Experimental results show the particles 
balance exploration of the parameter space with the correlated goal oriented trajectory driven by their 
social interactions. The information learned from this analysis can be used to extract complexity mea-
sures to classify the behavior and control of particle swarm optimization, and make proper decisions on 
what to do next. This novel analysis of a particle trajectory in the time and frequency domains presents 
clear advantages of particle swarm optimization and inherent properties that make this optimization 
algorithm a suitable choice for use in cognitive machines.
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1. INTRODUCTION

One of the goals of a cognitive system is to emulate 
the behavior of human cognition (Wang, 2002; 
Wang, Zhang, & Kinsner, 2010). There are several 
cognitive systems that are being implemented at 
different levels of complexity, including cognitive 
radio (Haykin, 2005; Haykin, Reed, Li, & Shafi, 
2009a, 2009b), cognitive radar (Haykin, 2006), 
and cognitive networks (Hossain & Bhargava, 
2007). All these examples of cognitive systems 
share four phases used to (1) acquire, (2) pro-
cess, (3) interpret, and (4) express information 
for actions (Wang, 2002). The acquisition phase 
consists of sensors gathering data from both the 
environment and other interacting systems or 
living creatures, as well as the system itself. This 
phase is also responsible for representing the data 
to maximize the efficiency of the subsequent 
phases. Failure to pick a suitable representation 
can have a significant effect on the performance 
of the cognitive machine (Gavrilova, 2009). The 
second phase of the system is to process the raw 
data by extracting the useful information from the 
system, and to perform pertinent computations to 
determine how the cognitive machine is to act in 
the future. As described in (Kinsner, 2004), the 
processing and interpreting of information must 
be done at multiple scales in order to extract 
the pertinent features for very general and very 
specific decision making processes. The main 
objective of the multi-scale analysis is to reveal 
any long-term correlations in the behavior or the 
underlying processes that can be used to classify 
and/or improve the performance of the system 
(Kinsner, 2004). Cognitive processes are consid-
ered to be inherently long-range dependent since 
the environment in which systems is placed also 
experiences a long-range correlated behavior. The 
interpretation phase determines which actions 
to execute in which order and finally, the last 
stage expresses the decisions in ways that can be 
conveyed to other parts of the system (actuators) 
and, in some cases, to a user.

As part of the processing and interpretation 
stages, a cognitive system must be able to look 
at large amounts of data and make quick (often 
faster than real time, or hyper-real time) deci-
sions on what to do next. The decision process 
often requires more alternatives to be considered 
in a short window of time than it is physically 
possible for a real-time system (Kinsner, 2004). 
Thus, in order to make good decisions without 
exploring all possible paths, a cognitive system 
requires optimization techniques that can survey 
the possible options, and quickly select the best 
or most suitable option possible. Furthermore, 
given the long-term dependence found in cogni-
tive machines, an optimization algorithm that can 
reveal correlated behaviors can help better predict 
future behaviors.

There are many applications of this research. 
For example, scheduling tasks on multi-core 
systems for space applications requires an intel-
ligent system capable of autonomously reading 
status information on the system to select which 
routines to execute in order to keep the satellite 
operational. The status of the components can be 
used as drivers for the evolutionary algorithm to 
schedule tasks even when unpredictable situations 
arise (i.e., one processor fails). Furthermore, in 
these real-time applications, one cannot allocate 
tasks dynamically using near-optimal schedules. 
Therefore, long-term correlations about the system 
and an intricate knowledge of the behavior of the 
satellite can be used in predictive scheduling to 
maximize the use of available resources.

This paper first reviews the requirements for an 
ideal optimization technique for use in cognitive 
systems, and uses a novel analysis of a particle 
swarm optimization trajectories in the time and 
frequency domains to show how the algorithm is 
inherently designed to satisfy these requirements.
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