
79

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-4666-2937-0.ch005

Daniel Izquierdo-Cortazar
Universidad Rey Juan Carlos, Spain

Andrea Capiluppi
University of East London, UK

Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos, Spain

Are Developers Fixing
Their Own Bugs?

Tracing Bug-Fixing and Bug-
Seeding Committers

ABSTRACT

The process of fixing software bugs plays a key role in the maintenance activities of a software project.
Ideally, code ownership and responsibility should be enforced among developers working on the same
artifacts, so that those introducing buggy code could also contribute to its fix. However, especially in
FLOSS projects, this mechanism is not clearly understood: in particular, it is not known whether those
contributors fixing a bug are the same introducing and seeding it in the first place. This paper analyzes
the comm-central FLOSS project, which hosts part of the Thunderbird, SeaMonkey, Lightning exten-
sions and Sunbird projects from the Mozilla community. The analysis is focused at the level of lines of
code and it uses the information stored in the source code management system. The results of this study
show that in 80% of the cases, the bug-fixing activity involves source code modified by at most two de-
velopers. It also emerges that the developers fixing the bug are only responsible for 3.5% of the previous
modifications to the lines affected; this implies that the other developers making changes to those lines
could have made that fix. In most of the cases the bug fixing process in comm-central is not carried out
by the same developers than those who seeded the buggy code.

80

Are Developers Fixing Their Own Bugs?

1. INTRODUCTION

One of the most recognised advantages of the Free/
Libre/Open Source Software (FLOSS) develop-
ment model is its reliance on an open process:
anyone is welcome to contribute; the majority
of developers can focus on modularised, limited
sections within a very large and complex system;
and few core developers are generally experts in
several areas of the source code, in a well accepted
layered model (the “onion model” Mockus et
al., 2002). These layers have been connected to
actual responsibilities; core developers should
focus on the main, more important features, while
experimental versions should be implemented and
tested by contributors on the development fringes
(Goldman & Gabriel, 2004). Also, the layers of
such model have been related to a shift in produc-
tivity: a recurring finding within FLOSS empirical
research has shown that most of the development
work is achieved by a small amount of develop-
ers, in a typical Pareto distribution (Koch, 2009).

The combinations of all the findings above have
various, and not completely understood, effects.
In some cases, a strong territoriality will emerge
among developers “owning” certain parts of the
code, and becoming more and more proficient
in those (German, 2004; Robles et al., 2006). In
other cases, the very nature of the FLOSS develop-
ment implies that contributors join and then leave
without necessarily halting the project (Robles
& González-Barahona, 2006), but resulting in
abandoned code and orphaned lines (Izquierdo-
Cortazar et al., 2009).

Finally, certain developers will need to be
active in maintenance activities: corrective main-
tenance fixing bugs in various parts of the code,
for instance when source code is first introduced
by developers with a low knowledge of the project
(junior developers); perfective maintenance, for
instance when new improved features are needed
but the original developers have left the project
and abandoned their contributions (Adams et
al., 2009); adaptive maintenance, for instance

when adaptations are needed, but the source
code has been contributed in a programming
language different from the main one supported
by the project, so the current developers do not
have enough skills in that language. Although in
specific FLOSS communities there is the shared
expectation that the original contributor will sup-
port his/her modules (especially in highly modular
FLOSS projects, as Moodle or Drupal, Capiluppi
et al., 2010), the volatility of contributors and the
process of bug-fixing need to be clarified with
respect of who introduced a certain bug, and who
contributed the code to fix it. Examining and de-
termining the proportion of errors that are fixed
by different developers than those who introduced
the error could provide a first approach to better
understand the bug-fixing process in the specific
FLOSS communities being studied.

In order to tackle this problem, the present
study analyses the code base contained within
the comm-central project (http://hg.mozilla.org/
comm-central), a Mercurial Software Configura-
tion Management (SCM) repository of Mozilla
components (Thunderbird, SeaMonkey, the Light-
ning extension and Sunbird). Given the number and
ID of each fixed bug, this research evaluates which
changes have been performed, and by who, in the
process of fixing the specific bug. The objective of
this research is to evaluate patterns of bug-fixing
activities within this FLOSS community, in order
to detect, if any, the most recurrent and relevant
scenarios among developers fixing bugs and those
seeding the problem in the first place.

This paper makes two main contributions:

1. Identifying Bug-Fixing and Bug-Seeding
Committers: The detection of those com-
mits that have fixed a bug is crucial to
determine the previous changes that took
place to seed that bug. Using the source code
lines that were handled by committers and
tracing their history back make possible to
know who previously handled those lines.
Thus, it is possible to trace the changes in

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/developers-fixing-their-own-bugs/74664

Related Content

An Empirical Study of Open Source Software Usability: The Industrial Perspective
Arif Raza, Luiz Fernando Capretzand Faheem Ahmed (2011). International Journal of Open Source

Software and Processes (pp. 1-16).

www.irma-international.org/article/empirical-study-open-source-software/54243

Creating Open Source Lecture Materials: A Guide to Trends, Technologies, and Approaches in

the Information Sciences
William H. Hsu (2013). Open-Source Technologies for Maximizing the Creation, Deployment, and Use of

Digital Resources and Information (pp. 253-280).

www.irma-international.org/chapter/creating-open-source-lecture-materials/70129

Open Source Software Adoption: Anatomy of Success and Failure
Brian Fitzgerald (2009). International Journal of Open Source Software and Processes (pp. 1-23).

www.irma-international.org/article/open-source-software-adoption/2768

Business Models in Open Source Software Value Creation
Marko Seppänen (2007). Handbook of Research on Open Source Software: Technological, Economic, and

Social Perspectives (pp. 578-589).

www.irma-international.org/chapter/business-models-open-source-software/21218

Evaluating Maintainability of Open Source Software: A Case Study
Feras Hanandeh, Ahmad A. Saifan, Mohammed Akour, Noor Khamis Al-Husseinand Khadijah Zayed

Shatnawi (2017). International Journal of Open Source Software and Processes (pp. 1-20).

www.irma-international.org/article/evaluating-maintainability-of-open-source-software/190481

http://www.igi-global.com/chapter/developers-fixing-their-own-bugs/74664
http://www.irma-international.org/article/empirical-study-open-source-software/54243
http://www.irma-international.org/chapter/creating-open-source-lecture-materials/70129
http://www.irma-international.org/article/open-source-software-adoption/2768
http://www.irma-international.org/chapter/business-models-open-source-software/21218
http://www.irma-international.org/article/evaluating-maintainability-of-open-source-software/190481

