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Chapter  26

INTRODUCTION

Traditional data mining algorithms, such as as-
sociation rule mining, market basket analysis, 
and cluster analysis, commonly attempt to find 
patterns in a single relation that stores a collection 
of independent instances. An emerging challenge 

for data mining is to tackle the problem of mining 
collections of inter-related instances, represented 
as graphs, usually spanning several relations.

Graphs are convenient representations of 
numerous settings, such as social networks, scien-
tific publication networks, authors vs. conference 
participation, and others. Over the last decade, 
the number of data that should be represented as 
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ABSTRACT

Graphs appear in several settings, like social networks, recommendation systems, computer communica-
tion networks, gene/protein biological networks, among others. A large amount of graph patterns, as well 
as graph generator models that mimic such patterns have been proposed over the last years. However, 
a deep and recurring question still remains: “What is a good pattern?” The answer is related to find-
ing a pattern or a tool able to help distinguishing between actual real-world and fake graphs. Here we 
explore the ability of ShatterPlots, a simple and powerful algorithm to tease out patterns of real graphs, 
helping us to spot fake/masked graphs. The idea is to force a graph to reach a critical (“Shattering”) 
point, randomly deleting edges, and study its properties at that point.
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graphs (e.g. social networks in LinkedIn, Facebook 
and Flickr) has increased exponentially (Newman, 
2003). Therefore, graph mining has become an 
essential technique to extract knowledge from 
networks. Many fascinating non-intuitive network 
properties, such as small and shrinking diameter, 
degree distribution, triangles, eigenvalues, and 
community structures (Faloutsos et al., 1999, 
Leskovec et al., 2007b, Tsourakakis, 2008, For-
tunato, 2010) have been discovered.

Network properties are important to understand 
the network behavior and formation. For example, 
if most of the nodes follow a specific pattern, the 
deviating ones can be outliers and should be more 
carefully studied. To develop graph analysis tech-
niques, or to test new hypotheses and algorithms for 
graphs, it is often necessary to drill over synthetic 
graphs, where the target properties are known to 
occur within known parameters. Therefore, the 
generation of synthetic graphs is an important 
asset. Data generation to evaluate traditional data 
mining algorithms is a fairly well-understood 
technique, and several statistical methods have 
been long available. However, the development of 
synthetic graphs that resemble real ones requires 
great efforts and synthetic graph generation is 
still an open research issue (Chakrabarti et al., 
2004). To improve graph generators, especially to 
generate well-suited graphs to help evaluate social 
network analysis tools, it is important to identify 
and describe properties that can distinguish real 
from synthetic networks.

Spotting synthetic data is another important 
research topic, since synthetic networks can be 
generated or mixed with real networks to hide or 
fake information. For instance, in a network for 
product recommendation or reliability, unethical 
participants might try to insert few, well-designed 
synthetic fake nodes, skewing the scores reliability.

In this context, this chapter presents techniques 
and properties, such as node degree distribution, 
number of triangles, adjacency matrix eigenvalues 
and others (Faloutsos et al., 1999, Tsourakakis, 

2008, Leskovec et al., 2007b) developed to mine 
graphs. However, these traditional properties 
used alone do not allow distinguishing synthetic 
network from real ones. For example, if one com-
pares the degree distribution of a real network 
and a synthetic network generated by preferential 
attachment, both will have a power law degree 
distribution.

ShatterPlots (Appel et al., 2009) is a technique 
that allows distinguishing between real and syn-
thetic graphs. Its process is based on network 
resilience and randomly removes edges from a 
network until it reaches a state, known as Shat-
tering point, where the network reaches its largest 
effective diameter, that is, the node reachability 
is at its worst point. At this point, it is possible 
to extract interesting patterns for the number of 
nodes and edges and the triangles distributions, 
as well as properties of connected components 
and adjacency matrix eigenvalues. We will show 
that the combination of all these properties helps 
us separate real networks from synthetic ones.

Traditionally, only the node degree, the distri-
butions of the number of triangles and diameter 
properties have been used to distinguish between 
synthetic and real networks. Those measure-
ments are generally enough to compare real and 
random graphs (Erdos and Renyi, 1960), since 
those characteristics can tell random graphs apart. 
However, more elaborate network generators, such 
as the Small World (Watts and Strogatz, 1998) 
and the Preferential Attachment (Barabasi and 
Albert, 1999) techniques can closely mimic these 
properties following a power law (Clauset et al., 
2009), enforcing a large number of triangles and 
a small diameter and better resembling the real 
networks. Spotting real graphs from synthetic ones 
created by those newer generators is therefore a 
tough enterprise. Forcing a graph to a critical 
state, as the ShatterPlots technique does, and 
measuring its properties at that state reveals the 
inner nature of the graph, helping to identify its 
inherent constitution.
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