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Chapter  42

INTRODUCTION

The successful application of enzymes as in-
dustrial biocatalysts requires the availability of 
suitable enzymes with high activity, specificity 
and stability in process conditions. However, 

naturally procreant enzymes are often not op-
timized to meet these requirements(Zhao et al., 
2002). Using the method of directed evolution, 
we can not only produce useful biocatalyst for 
the organic chemistry domain, but also improve 
the properties of the biocatalyst and even create 
biocatalysts that possess novel catalytic activities 
and properties (Raillard et al., 2001). Directed 
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ABSTRACT

Many enzymes have been widely used in industrial production, for they have higher catalytic efficiency and 
catalytic specificity than the traditional catalysts. Therefore, the performance of enzymes has attracted wide 
attention. However, due to various factors, enzymes often cannot show their greatest catalytic efficiency and 
the strongest catalytic ability in industrial production. In order to improve the enzyme activity and specific-
ity, people become increasingly interested in the transformation and modification of existing enzymes. For 
the structure modification of proteinase, this chapter introduces a computational method for modelling 
error-prone PCR. Error-prone PCR is a DNA replication process that intentionally introduces copying 
errors by imposing mutagenic reaction condition. We then conclude about the mathematical principle of 
error-prone PCR which may be applied to the quantitative analysis of directed evolution in future studies.
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evolution has been used increasingly in academic 
and industrial laboratories to modify and improve 
important biocatalysts (Arnold & Volkov, 1999). 
It is a fast way that simulates Darwinian evolution 
in the test tube to improve protein with a certain 
purpose (Zhao et al., 2002). Relative to the tra-
ditional “rational design”, this method is called 
“irrational design”. Error-prone PCR protocols, 
which use a low fidelity replication step to intro-
duce random point mutations into DNA sequences 
at each round of amplification, were used in early 
directed evolution experiments (Moore & Arnold, 
1996; Zaccolo & Gherardi, 1999).

Error-prone PCR is a DNA replication process 
that introduces copying errors in PCR process 
by changing reaction conditions. The key to the 
error-prone PCR is to control the DNA muta-
tion frequency (Leung et al., 1989). If the DNA 
mutation frequency is too high, the vast majority 
of the procreant enzymes will lose their activity; 
if the mutation frequency is too low, the amount 
of wild-type enzymes will be too high and the 
diversity of the sample will be too low. The ob-
served mutational frequency resulted in 0.25-20 
mutations per 1000 base pairs in the error-prone 
PCR. The ideal rate of basic group displacement 
and the optimal error-prone PCR condition depend 
on the length of the target DNA fragment, the run-
ning time of PCR and the mutational frequency 
ω (Moore & Arnold, 1996).

MODELING FOR ERROR-
PRONE PCR

The top priority of mutagenic PCR is to introduce 
various types of mutations in an unbiased form 
rather than to achieve a high overall level of ampli-
fication (Cadwell & Joyce, 1994). As in the regular 
PCR, the first step is the denaturing which the 
double-stranded DNA is separated into two single 
strands by heating; the second step is the annealing 
which is the primer binds to the complementary 

single-strand DNA; the third step is extension 
which the template sequence is extended by DNA 
polymerase. As non-complementary nucleotides 
can bind to the extended-chain, mutation occurs 
in the third step (Gregory & Costas, 2000). The 
error rate of Taq polymerase is the highest of the 
known thermostable DNA polymerases, in the 
range of 0.1×10-4 to 2×10-4 per nucleotide per 
pass of the polymerase, and depending on reaction 
conditions (Leung et al., 1989). It is important 
to control these highly variable copying errors 
for obtaining “useful” mutations and excluding 
“useless” mutations (Gregory & Costas, 2000). 
Simulation technique has become extremely im-
portant in almost every aspect of scientific and 
engineering endeavor(Neim, 1995). Simulation 
is experimentation with models(Korn & Wait, 
1978).Therefore, we introduce computational 
method model into error-prone PCR and make a 
conclusion about mathematic law of error-prone 
PCR, then it can play a guiding role in the analysis.

In the proposed model, mutations will occur 
during the extending process and every mutation 
can be considered as a contrary event to the oth-
ers. Let ω represent different mutation rates and 
a single mutation rate Mij stands for the mutative 
probability from nucleotide i to nucleotide j.
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These values depend on the experimental 
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