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ABSTRACT

A computational mutagenesis is detailed whereby each single residue substitution in a protein chain of 
primary sequence length N is represented as a sparse N-dimensional feature vector, whose M << N non-
zero components locally quantify environmental perturbations occurring at the mutated position and its 
neighbors in the protein structure. The methodology makes use of both the Delaunay tessellation algorithm 
for representing protein structures, as well as a four-body, knowledge based, statistical contact potential. 
Feature vectors for each subset of mutants due to all possible residue substitutions at a particular posi-
tion cohabit the same M-dimensional subspace, where the value of M and the identities of the M nonzero 
components are similarly position dependent. The approach is used to characterize a large experimental 
dataset of single residue substitutions in bacteriophage T4 lysozyme, each categorized as either unaffected 
or affected based on the measured level of mutant activity relative to that of the native protein. Performance 
of a single classifier trained with the collective set of mutants in N-space is compared to that of an ensemble 
of position-specific classifiers trained using disjoint mutant subsets residing in significantly smaller sub-
spaces. Results suggest that significant improvements can be achieved through subspace modeling.
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INTRODUCTION

Protein engineering experiments involving the 
synthesis and analysis of new proteins, each dif-
fering from the wild type via a single amino acid 
replacement introduced into the native sequence, 
yield important insights into protein folding and 
activity by characterizing the structural and/or 
functional roles of constituent residue positions 
(Lehmann, Pasamontes, Lassen, & Wyss, 2000; 
Vieille & Zeikus, 2001; Yang, Wang, & Fitzgerald, 
2004). However, the prohibitively time consum-
ing and expensive nature of conducting compre-
hensive single residue mutagenesis studies leads 
researchers to prioritize these experiments based 
on information gleaned from a variety of sources, 
including predictions obtained from in silico 
models. Such models may utilize an evolutionary 
scoring function (Kumar, Henikoff, & Ng, 2009), 
apply physical (Kollman et al., 2000; Pitera & 
Kollman, 2000), statistical (Kwasigroch, Gilis, 
Dehouck, & Rooman, 2002; Parthiban, Gromiha, 
Hoppe, & Schomburg, 2007; Zhou & Zhou, 2002), 
or empirical (Bordner & Abagyan, 2004; Guerois, 
Nielsen, & Serrano, 2002) potentials, or imple-
ment machine learning tools (Capriotti, Fariselli, 
& Casadio, 2004; Cheng, Randall, & Baldi, 2006; 
Huang, Gromiha, & Ho, 2007; Verzilli, Whittaker, 
Stallard, & Chasman, 2005). In each case the model 
is designed to predict a specific outcome of single 
residue substitutions in a protein, for example any 
evidence of an effect on protein activity, the rela-
tive change in protein stability, or more broadly, 
any pathological consequence to the organism.

With machine learning models, the single 
residue protein mutants populating training sets 
are each typically represented as a feature vec-
tor consisting of attributes that characterize the 
sequence or structure, frequently combined with 
components that reflect evolutionary informa-
tion. Recently, studies have begun to focus on 
combining potential functions with machine 
learning methods by using several of the energy 
terms associated with the mutant proteins as at-

tributes in feature vectors (Dehouck et al., 2009; 
Lise, Archambeau, Pontil, & Jones, 2009; Masso 
& Vaisman, 2007, 2008). One such approach in-
volves a computational mutagenesis procedure that 
utilizes a four-body, knowledge based, statistical 
contact potential and yields, for any mutation due 
to a single amino acid replacement in a protein 
structure, an N-dimensional vector of ensuing 
environmental perturbations occurring at each 
of the N constituent residue positions (Masso & 
Vaisman, 2007). Since the average sized polypep-
tide chain in a protein structure consists of N ~ 
200 amino acids, protein mutants are represented 
by vectors in high-dimensional Euclidean space. 
For each mutant, the methodology captures only 
local effects at the M << N residue positions that 
are structurally closest to the mutated residue 
(including the mutated position itself) identified 
via Delaunay tessellation of the protein structure, 
a classical computational geometry technique, 
where the value of M and the identities of the M 
nonzero vector components vary according to the 
residue position being mutated (Masso & Vais-
man, 2007). Hence the vectors are sparse, with 
those representing the collective set of 19 mutants, 
obtained by introducing all possible alternative 
amino acid substitutions at one particular posi-
tion in the protein, residing in the same particular 
M-dimensional subspace.

All possible single residue replacements in a 
protein of size N theoretically lead to 19N mutants; 
however, experimental comprehensive mutagen-
esis studies generally involve the synthesis and 
analysis of far fewer mutants, which subsequently 
can be classified based on observed changes rela-
tive to the native protein (e.g., the activity of each 
mutant is either “unaffected” or “affected” by the 
respective amino acid substitution). Such an ex-
perimental dataset for a protein, with each mutant 
represented as an N-dimensional feature vector 
of inputs along with a corresponding categori-
cal output attribute identifying the experimental 
mutational consequence, can be used to train and 
evaluate the performance of models obtained via 
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