
140

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

1. INTRODUCTION

Complex embedded systems, like cell phones and
multimedia devices, share a number of features
that determine a set of design requirements:

• Limited resources: Small portable devic-
es are designed under space, weight, and
energy constraints. Often they also have
cost constraints related with mass produc-

tion and strong industrial competition. As a
consequence, embedded applications typi-
cally run on small processing units with
limited memory and computational power.
To make these devices cost-effective, it is
mandatory to make a very efficient use of
the computational resources, both at the
application and the operating system level.

• High concurrency and resource sharing:
Typically, several functions are simultane-

Giorgio C. Buttazzo
Scuola Superiore Sant’Anna, Italy

Emerging Real-Time
Methodologies

ABSTRACT

The number of computer-controlled systems has increased dramatically in our daily life. Processors
and microcontrollers are embedded in most of the devices we use every day, such as mobile phones,
cameras, media players, navigators, washing machines, biomedical devices, and cars. The complexity of
such systems is increasing exponentially, pushed by the demand of new products with extra functionality,
higher performance requirements, and low energy consumption. To cope with such a complex scenario,
many embedded systems are adopting more powerful and highly integrated hardware components,
such as multi-core systems, network-on-chip architectures, inertial subsystems, and special purpose co-
processors. However, developing, analyzing, and testing the application software on these architectures
is not easy, and new methodologies are being investigated in the research community to guarantee high
predictability and efficiency in next generation embedded devices. This chapter presents some recent
approaches proposed within the real-time research community aimed at achieving predictability, high
modularity, efficiency, and adaptability in modern embedded computing systems.

DOI: 10.4018/978-1-4666-3922-5.ch008

141

Emerging Real-Time Methodologies

ously active, often sharing the same set of
resources. For instance, in a cell phone,
different tasks can be performed at the
same time, such as browsing, download-
ing, playing music, and receiving a call.
Most of them need the same resources to
run, as processor, memory, display, and
sound codec. As a consequence, tasks can
experience variable blocking delays due to
the interference generated by the synchro-
nization mechanisms required to access
shared resources. To reduce inter-task in-
terference and make tasks execution more
predictable, proper scheduling algorithms
have to be adopted at the operating systems
level to isolate the timing behavior of con-
current tasks.

• Interaction with the environment: Most
embedded devices interact with the envi-
ronment and have demanding quality spec-
ifications, whose satisfaction requires the
system to timely react to external events
and execute computational activities with-
in precise timing constraints. The operat-
ing system is responsible for ensuring a
predictable execution behavior of the ap-
plication to allow an off-line guarantee of
the required performance.

• Dynamic behavior: In embedded sys-
tems characterized by several concurrent
tasks, the overall computational load is not
constant, but can have high variations, de-
pending on the tasks activated by the user
and the resources needed by the activities,
which in turn may depend on the actual
data. If not properly handled, overload con-
ditions may cause undesired effects, from
a transient performance degradation to a
complete system crash. A certain degree
of adaptivity in the resource management
policies is essential to reallocate resources
during peak load situations.

The combination of real-time features in tasks
with dynamic behavior, together with cost and
resource constraints, creates new problems to
be addressed in the design of such systems, at
different architecture levels. The classical worst-
case design approach, typically adopted in hard
real-time systems to guarantee timely responses
in all possible scenarios, is no longer acceptable
in highly dynamic environments, because it would
waste the resources and prohibitively increase
the cost.

Instead of allocating resources for the worst
case, smarter techniques are needed to sense the
current state of the environment and react as
a consequence. This means that, to cope with
dynamic environments, a real-time system must
be adaptive; that is, it must be able to adjust its
internal strategies in response to a change in the
environment to keep the system performance at
a desired level or, if this is not possible, degrade
it in a controlled fashion.

Implementing adaptive embedded systems
requires specific support at different levels of
the software architecture. The most important
component affecting adaptivity is the kernel, but
some flexibility can also be introduced above the
operating system, in a software layer denoted as
the middleware. Some adaptation can also be
done at the application level; however, it poten-
tially incurs in low efficiency due to the higher
overhead normally introduced by the application
level services. Normally, for efficiency reasons,
adaptation should be handled at the lower layers
of the system architecture, as close as possible
to the system resources. For those embedded
systems that are distributed among several com-
puting nodes, special network methodologies are
needed to achieve adaptive behavior and predict-
able response.

The rest of this document presents several tech-
niques to make next generation embedded systems
more predictable and adaptive to environmental
changes. In particular, Section 1 summarizes the
most relevant results on real-time scheduling; Sec-

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/emerging-real-time-methodologies/76955

Related Content

UML-Driven Software Performance Engineering: A Systematic Mapping and Trend Analysis
Vahid Garousi, Shawn Shahnewazand Diwakar Krishnamurthy (2013). Progressions and Innovations in

Model-Driven Software Engineering (pp. 18-64).

www.irma-international.org/chapter/uml-driven-software-performance-engineering/78208

Orrs Orchestration of a Resource Reservation System Using Fuzzy Theory in High-Performance

Computing: Lifeline of the Computing World
Ashish Tiwariand Ritu Garg (2022). International Journal of Software Innovation (pp. 1-28).

www.irma-international.org/article/orrs-orchestration-of-a-resource-reservation-system-using-fuzzy-theory-in-high-

performance-computing/297923

Designing Reputation and Trust Management Systems
Roman Beckand Jochen Franke (2009). Systems Analysis and Design for Advanced Modeling Methods:

Best Practices (pp. 202-218).

www.irma-international.org/chapter/designing-reputation-trust-management-systems/30024

Impact of Fault-Prone Components on Effective Software Testing: An Industrial Survey
D. Jeya Malaand A. Jalila (2015). International Journal of Systems and Service-Oriented Engineering (pp.

38-51).

www.irma-international.org/article/impact-of-fault-prone-components-on-effective-software-testing/134433

Agile Software Development Quality Assurance: Agile Project Management, Quality Metrics, and

Methodologies
James F. Kileand Maheshwar R. Inampudi (2009). Software Applications: Concepts, Methodologies, Tools,

and Applications (pp. 2680-2699).

www.irma-international.org/chapter/agile-software-development-quality-assurance/29528

http://www.igi-global.com/chapter/emerging-real-time-methodologies/76955
http://www.irma-international.org/chapter/uml-driven-software-performance-engineering/78208
http://www.irma-international.org/article/orrs-orchestration-of-a-resource-reservation-system-using-fuzzy-theory-in-high-performance-computing/297923
http://www.irma-international.org/article/orrs-orchestration-of-a-resource-reservation-system-using-fuzzy-theory-in-high-performance-computing/297923
http://www.irma-international.org/chapter/designing-reputation-trust-management-systems/30024
http://www.irma-international.org/article/impact-of-fault-prone-components-on-effective-software-testing/134433
http://www.irma-international.org/chapter/agile-software-development-quality-assurance/29528

