
184

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

INTRODUCTION

Embedded Control Systems have become useful
in our daily lives such as automotive application,
industrial management, control avionics, … To
reduce their cost of development, these systems

must be reusable. The component-based program-
ming seems the best solution for the development
of such systems.

Several component technologies are proposed
such as JavaBeans (related to Sun society) (Jubin,
2000), Component Object Model (related to Mi-
crosoft society) (COM, 2010), Corba Component

Atef Gharbi
University of Carthage, Tunisia

Hamza Gharsellaoui
University of Carthage, Tunisia

Antonio Valentini
O3neida Europe, Belgium

Mohamed Khalgui
University of Carthage, Tunisia & CNR

Research Council, Italy & Xidian University,
China

Safety Reconfiguration of
Embedded Control Systems

ABSTRACT

The authors study the safety reconfiguration of embedded control systems following component-based
approaches from the functional level to the operational level. At the functional level, a Control Component
is defined as an event-triggered software unit characterized by an interface that supports interactions
with the environment (the plant or other Control Components). They define the architecture of the
Reconfiguration Agent, which is modelled by nested state machines to apply local reconfigurations. The
authors propose technical solutions to implement the agent-based architecture by defining UML meta-
models for both Control Components and also agents. At the operational level, a task is assumed to
be a set of components having some properties independently from any real-time operating system. To
guarantee safety reconfigurations of tasks at run-time, the authors define service and reconfiguration
processes for tasks and use the semaphore concept to ensure safety mutual exclusions. They apply the
priority ceiling protocol as a method to ensure the scheduling between periodic tasks with precedence
and mutual exclusion constraints.

DOI: 10.4018/978-1-4666-3922-5.ch010

185

Safety Reconfiguration of Embedded Control Systems

Model (provided by the Object Management
Group [OMG]) (Pérez, 2002).

However, there are few kinds of component
technologies (such as Koala [Jonge, 2009], PBO
[Stewart, 1997], PECOS [Wuyts, 2005], …)
used in the development of embedded system
due to extra-functional properties to be verified
(for example quality of service, timeliness, …)
(Artist, 2003).

Anyway, each component technology has its
benefits and its drawbacks.

As in our work, we want to be independent
of any component technology, we propose a new
concept of component named “Control Compo-
nent” which is considered as a software part having
interaction with other Control Components and
ensuring control of the plant through data provided
from (resp. to) sensors (resp. actuator).

A Control System is assumed to be a compo-
sition of Control Components with precedence
constraints to control the plant according to well-
defined execution orders.

The proposed method to ensure Functional
Safety of the interconnected Control Component
is an agent-oriented software. On the one hand,
we study the Functional Safety in a central system
i.e. a single agent supervising the whole system.

This agent reacts as soon as an error occurs in
the plant. The decision taken may vary from chang-
ing the set of Control Components that constitute
the system, modifying the connection between
different Control Components, substituting the
behavior of some Control Component by another
behavior or even modifying data. According to
these functionalities, it is possible to define the
architecture of the agent as based on four levels.

We propose useful meta-models for Control
Components and also for intelligent agents. These
meta-models are used to implement adaptive
embedded control systems.

As we choose to apply dynamic scenarios, the
system should run even during automatic recon-

figurations, while preserving correct executions
of functional tasks.

Given that Control Components are defined in
general to run sequentially, this feature is incon-
venient for real-time applications which typically
handle several inputs and outputs in a too short
time constraint.

To meet performance and timing requirements,
a real-time must be designed for concurrency.

To do so, we define at the operational level some
sequential program units called real-time tasks.

Thus, we define a real-time task as a set of
Control Components having some real-time
constraints. We characterize a task by a set of
properties independently from any Real Time
Operating System (RTOS).

We define service processes as software pro-
cesses for tasks to provide system’s functionalities,
and define reconfiguration processes as tasks to
apply reconfiguration scenarios at run-time. In
fact, service processes are functional tasks of
components to be reconfigured by reconfigura-
tion processes.

To guarantee a correct and safety behavior
of the system, we use semaphores to ensure the
synchronization between processes. We apply the
famous algorithm of synchronization between
reader and writer processes such that executing a
service is considered as a reader and reconfiguring
a component is assumed to be a writer process.
The proposed algorithm ensures that many ser-
vice processes can be simultaneously executed,
whereas reconfiguration processes must have
exclusive access.

We study in particular the scheduling of tasks
through a Real Time Operating System. We apply
the priority ceiling protocol proposed by (Sha,
1990) to avoid the problem of priority inversion as
well as the deadlock between the different tasks.
The priority ceiling protocol supposes that each
semaphore is assigned a priority ceiling which
is equal to the highest priority task using this

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/safety-reconfiguration-embedded-control-

systems/76957

Related Content

Using Dynamic Time Warping to Detect Clones in Software Systems
Mostefai Abdelkader (2021). International Journal of Software Innovation (pp. 20-36).

www.irma-international.org/article/using-dynamic-time-warping-to-detect-clones-in-software-systems/266280

Modelling Business Rules Using Defeasible Logic
G. Antoniouand M. Arief (2002). Optimal Information Modeling Techniques (pp. 128-136).

www.irma-international.org/chapter/modelling-business-rules-using-defeasible/27831

Model-Driven Automated Error Recovery in Cloud Computing
Yu Sun, Jules White, Jeff Grayand Aniruddha Gokhale (2011). Model-Driven Domain Analysis and

Software Development: Architectures and Functions (pp. 136-155).

www.irma-international.org/chapter/model-driven-automated-error-recovery/49157

SQL Scorecard for Improved Stability and Performance of Data Warehouses
Nayem Rahman (2016). International Journal of Software Innovation (pp. 22-37).

www.irma-international.org/article/sql-scorecard-for-improved-stability-and-performance-of-data-warehouses/157277

The Anatomy of the ArchiMate Language
M.M. Lankhorst, H.A. Properand H. Jonkers (2010). International Journal of Information System Modeling

and Design (pp. 1-32).

www.irma-international.org/article/anatomy-archimate-language/40951

http://www.igi-global.com/chapter/safety-reconfiguration-embedded-control-systems/76957
http://www.igi-global.com/chapter/safety-reconfiguration-embedded-control-systems/76957
http://www.irma-international.org/article/using-dynamic-time-warping-to-detect-clones-in-software-systems/266280
http://www.irma-international.org/chapter/modelling-business-rules-using-defeasible/27831
http://www.irma-international.org/chapter/model-driven-automated-error-recovery/49157
http://www.irma-international.org/article/sql-scorecard-for-improved-stability-and-performance-of-data-warehouses/157277
http://www.irma-international.org/article/anatomy-archimate-language/40951

