
1606

Chapter 3.19
Indexing in Data Warehouses:

Bitmaps and Beyond

Karen C. Davis
University of Cincinnati, USA

Ashima Gupta
University of Cincinnati, USA

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

Bitmap indexes (BIs) allow fast access to indi-
vidual attribute values that are needed to answer
a query by storing a bit for each distinct value and
tuple. A BI is defined for a single attribute and
the encodings are based solely on data values;
the property map (PMap) is a multidimensional
indexing technique that precomputes attribute
expressions for each tuple and stores the results
as bit strings. In order to determine whether the
PMap is competitive with BIs, we conduct a
performance study of the PMap with the range
encoded bit sliced index (REBSI) using cost
models to simulate storage and query process-
ing costs for different kinds of query types. We
identify parameters that have significant effect on
index performance and determine situations in
which either index is more suitable. These results
could be useful for improving the performance of
an analytical decision making system.

Introduction

A data warehouse is a repository of information
collected from different sources. Querying of
data warehouses for decision-making in areas
such as sales and marketing planning is referred
to as online analytical processing (OLAP). In the
write-once-read-many environment of OLAP ap-
plications, multidimensional data analysis is now
increasingly used for decision support systems
(DSS). Complex DSS queries are often submitted
interactively and reducing their response time is a
critical issue in the data warehousing environment
(Vanichayobon & Gruenwald, 1999; Jurgens &
Lenz, 2001). Bitmap indexes are widely used for
indexing warehouse data.

A bitmap index (BI) allows fast access to tuples
based on values of attributes. Bitmap indexes
consume only a fraction of the size of the indexed
data and provide dramatic performance gains.
Boolean operations such as AND, OR and NOT

 1607

Indexing in Data Warehouses

are extremely fast for bitmap vectors, also called
bitmaps or bit-vectors (O’Neil & Quass, 1997).
Bitmaps indicate whether an attribute in a tuple
is equal to, greater than or less than (depending
upon the type of BI) a specific value or not. The
length of a bit-vector is equal to the cardinality
of the indexed table. The position of a bit in a
bit-vector denotes the position of a tuple in the
table. For example, a simple bitmap index (SBI)
on an attribute status, with domain {backorder,
shipped}, results in two bitmap vectors, say Bb and
Bs. For Bb, the bit is set to 1 if the corresponding
tuple has the value “backorder” for the attribute
status, otherwise the bit is set to 0. Similarly for
Bs, the bit is set to 1 if the associated tuple has
the value “shipped” for the attribute status, other-
wise the bit is set to 0. For another attribute, say
product-category having values from 1-5, there
is a bitmap vector corresponding to each of the
five values, say B1-B5. Tuples that have product-
category value as 1 have the bit corresponding
to bit-vector B1 set; the rest of the bits for that
tuple are 0. Table 1 shows an SBI on status and
product-category for 5 tuples with two bitmap
vectors for status and five for product-category.
These indexes can be interpreted as follows: tuple
number 2 corresponds to a shipped order (Bs is set)
with product-category 5 (B5 is set). To illustrate
query processing with an SBI, consider a simple
SQL query that retrieves all tuples corresponding
to shipped orders for product category 5:

SELECT * FROM Inventory WHERE status = “shipped” AND
product-category = “5”

In order to evaluate this query using the ex-
ample SBIs, a query optimizer takes the bitmaps
for “status = shipped” and “product-category = 5”
and performs a logical AND operation. Tuple 2 in
Table 1 is the only tuple in the query answer.

We survey bitmap indexing techniques in the
next section. Then we propose a novel multidi-
mensional indexing technique that precomputes
attribute expressions for data items and stores the
results as bit strings. We study performance issues
for this technique and a comparable bitmap index
and recommend scenarios where one may be pref-
erable to the other. We conclude with guidelines
for improving query processing performance for
complex range queries.

Background

Bitmap indexes are designed for different query
types including range, aggregation and join
queries. Figure 1 shows tree diagrams of bitmap
indexes, which we classify into three categories
based on their main features. Figure 1(a) shows
bitmap indexing methods that use the simple
bitmap index (SBI) representation described in
the previous section. The techniques that use
clustering of attribute values are grouped in one
category. The other category consists of techniques
that are basically applications of SBI. Figure 1(b)
shows encoded bitmap index (EBI) techniques that
use binary encoding along with a mapping table
and retrieval functions. Each attribute is encoded
in such a way that the number of bitmap vectors
retrieved to answer a query is reduced compared
to the SBI. Bit-sliced index techniques are shown
in Figure 1(c). They are based on the idea of attri-
bute value decomposition, that is, decomposition
of an attribute value in digits according to some
base, either uniform or non-uniform. They can
be either range or equality encoded.

BIs comparable to the novel technique in-
troduced in the third section are discussed in
further detail below. We select one technique for

Table 1. Example of two simple bitmap indexes

status product-category

Tuple Bs Bb B1 B2 B3 B4 B5

1 1 0 0 1 0 0 0

2 1 0 0 0 0 0 1

3 1 0 0 0 0 1 0

4 0 1 1 0 0 0 0

5 1 0 0 0 1 0 0

15 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/indexing-data-warhousing/7718

Related Content

Data Reduction and Compression in Database Systems
Alexander Thomasian (2005). Encyclopedia of Data Warehousing and Mining (pp. 307-311).

www.irma-international.org/chapter/data-reduction-compression-database-systems/10613

Managing Variability as a Means to Promote Composability: A Robotics Perspective
Matthias Lutz, Juan F. Inglés-Romero, Dennis Stampfer, Alex Lotz, Cristina Vicente-Chicoteand Christian

Schlegel (2019). New Perspectives on Information Systems Modeling and Design (pp. 274-295).

www.irma-international.org/chapter/managing-variability-as-a-means-to-promote-composability/216342

Immersive Image Mining in Cardiology
Xiaoqiang Liu, Henk Koppelaar, Ronald Hamersand Nico Bruining (2005). Encyclopedia of Data Warehousing

and Mining (pp. 586-592).

www.irma-international.org/chapter/immersive-image-mining-cardiology/10665

Information Extraction in Biomedical Literature
Min Song, Il-Yeol Song, Xiaohua Huand Hyoil Han (2005). Encyclopedia of Data Warehousing and Mining (pp.

615-620).

www.irma-international.org/chapter/information-extraction-biomedical-literature/10670

Using Data Mining for Forecasting Data Management Needs
Qingyu Zhangand Richard S. Segall (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools,

and Applications (pp. 2088-2104).

www.irma-international.org/chapter/using-data-mining-forecasting-data/7750

http://www.igi-global.com/chapter/indexing-data-warhousing/7718
http://www.igi-global.com/chapter/indexing-data-warhousing/7718
http://www.irma-international.org/chapter/data-reduction-compression-database-systems/10613
http://www.irma-international.org/chapter/managing-variability-as-a-means-to-promote-composability/216342
http://www.irma-international.org/chapter/immersive-image-mining-cardiology/10665
http://www.irma-international.org/chapter/information-extraction-biomedical-literature/10670
http://www.irma-international.org/chapter/using-data-mining-forecasting-data/7750

