
34

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

A Review of Software
Quality Methodologies

ABSTRACT

Pervasive systems and increased reliance on embedded systems require that the underlying software is
properly tested and has in-built high quality. The approaches often adopted to realize software systems
have inherent weaknesses that have resulted in less robust software applications. The requirement of reli-
able software suggests that quality needs to be instilled at all stages of a software development paradigms,
especially at the testing stages of the development cycle ensuring that quality attributes and parameters are
taken into account when designing and developing software. In this respect, numerous tools, techniques,
and methodologies have also been proposed. In this chapter, the authors present and review different
methodologies employed to improve the software quality during the software development lifecycle.

INTRODUCTION

The abstract nature of software products make
them very different from conventional products
that we can touch and see being built. As a result,
the probability of human induced errors in soft-
ware systems becomes high. Software systems
have revolutionized every field of life. It is hard
to believe that software systems are not being
applied in any organizational setting. Extensive

use of software applications and products in
everyday life requires dependable and efficient
software applications to run the day to day ac-
tivities smoothly. This is equally true in case of
business organization and commercial environ-
ments. As a result, similar to other products, the
quality is emerging as an important attribute of
such software systems. Crosby (1979) defines
quality as “conformance to requirements” and
Pressman (2010) extends this definition to include
“adherence to standards”. Pressman (2010) defines

Saqib Saeed
University of Siegen, Germany

Farrukh Masood Khawaja
Ericsson Telekommunikation GmbH, Germany

Zaigham Mahmood
University of Derby, UK

DOI: 10.4018/978-1-4666-4301-7.ch003

35

A Review of Software Quality Methodologies

software quality as “conformance to explicitly
stated functional and performance requirements,
explicitly documented development standards, and
implicit characteristics that are expected of all pro-
fessionally developed software.” This definition
not only focuses on functional requirements but
also includes performance requirements, adher-
ence to development standards and presence of
generic professional quality attributes to determine
the quality level of software artifact. However,
the definition of software quality is a contested
concept in the software engineering literature (cf.
Kitchenham & Pfleeger, 1996; Petrasch, 1999).
The suggestion is that, in defining software quality,
user requirements and elicitation of such require-
ments must form an important aspect of quality. An
important reason behind this is that, in contrast to
the conventional products, elicitation of software
requirements is regarded as the responsibility of
the development team instead of the customers.
As a result, the requirements are categorized in
different types e.g. user requirements, functional
requirement, non functional requirements, us-
ability requirements, performance requirements.
The additional difficulty is that these requirements
may well conflict with each other; they may even
have different priority levels among stakeholders
(developer, user, financer etc.) depending on stake-
holders’ perspectives or the application domain.
It is also quite possible that it may be difficult to
achieve some of these requirements.

IEEE (1990) defines software quality as “the
degree to which a system, component, or process
meets customer or user needs or expectations.”
This definition only focuses on the conventional
marketing principle that customer is right and
quality is only measured based on the satisfaction
level of customer needs. On the other hand, other
quality parameters which are invisible to users,
but extremely important, get neglected. It is not
easy to quantify quality. It is, therefore, often as-
sessed in terms of its characteristics. Ghezzi et al.,
(2003) describe following eleven characteristics
of software quality:

• Correctness
• Reliability
• Robustness
• Performance
• Usability
• Verifiability
• Maintainability
• Reusability
• Portability
• Understandability
• Interoperability

Furthermore quality is also determined by the
process employed to design the product, product
characteristics and the project attributes in terms of
life cycle stages. Every application area also has its
own specialized quality requirements which need
to be considered while designing quality objec-
tives of a software project. This highlights the fact
that there is no strict definition of quality as each
software development project and product has its
own quality goals. In this chapter, we highlight
how the quality can be improved in each software
lifecycle phase and also suggest methodologies
that can be put in place to improve the software
development projects.

QUALITY IN SOFTWARE
DEVELOPMENT LIFECYCLE (SDLC)

The importance of enhanced quality suggests that
quality is not something that is added to a product
after it has been realized (such as garnishing a dish
that has already been cooked). It requires a quality
culture where the raw materials and the processes
involved have built-in quality. In such a culture,
enhancement of quality becomes everyone’s re-
sponsibility. Thus, it becomes an ongoing activity
performed throughout the software development
lifecycle, through all the various software devel-
opment phases; requirements engineering, system
design, development and testing. As previously
mentioned, software quality can also be correctly

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/review-software-quality-methodologies/77698

Related Content

Embedding Secret Data in Digital Media Using Texture Synthesis
Suraj Krishna Patil, Prashantkumar Marutirao Gavali, Alankar Shantaram Shelarand Sandipkumar

Chandrakant Sagare (2022). International Journal of Software Innovation (pp. 1-15).

www.irma-international.org/article/embedding-secret-data-in-digital-media-using-texture-synthesis/301225

Computational Intelligence in Cross Docking
Bo Xing (2014). International Journal of Software Innovation (pp. 1-8).

www.irma-international.org/article/computational-intelligence-in-cross-docking/111446

An Enhanced Deep Neural Network based approach for Speaker Recognition using Triumvirate

Euphemism Strategy: An Enhanced Deep Neural Network
 (2022). International Journal of Software Innovation (pp. 0-0).

www.irma-international.org/article//309108

Introduction
Neal G. Shaw (2001). Strategies for Managing Computer Software Upgrades (pp. 1-2).

www.irma-international.org/chapter/introduction/98484

Smart Black Box DVR System in IT-Based Vehicle Emergency Rescue Environment
Sun-O Choiand Jongbae Kim (2022). International Journal of Software Innovation (pp. 1-10).

www.irma-international.org/article/smart-black-box-dvr-system-in-it-based-vehicle-emergency-rescue-

environment/309961

http://www.igi-global.com/chapter/review-software-quality-methodologies/77698
http://www.irma-international.org/article/embedding-secret-data-in-digital-media-using-texture-synthesis/301225
http://www.irma-international.org/article/computational-intelligence-in-cross-docking/111446
http://www.irma-international.org/article//309108
http://www.irma-international.org/chapter/introduction/98484
http://www.irma-international.org/article/smart-black-box-dvr-system-in-it-based-vehicle-emergency-rescue-environment/309961
http://www.irma-international.org/article/smart-black-box-dvr-system-in-it-based-vehicle-emergency-rescue-environment/309961

