
50

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

Adapting Test-Driven
Development to Build
Robust Web Services

ABSTRACT

Web services are increasingly being used in business critical environments as a mean to provide a service
or integrate distinct software services. Research indicates that, in many cases, services are deployed with
robustness issues (i.e., displaying unexpected behaviors when in presence of invalid input conditions).
Recently, Test-Driven Development (TDD) emerged as software development technique based on test
cases that are defined before development, as a way to validate functionalities. However, programmers
typically disregard the verification of limit conditions, such as the ones targeted by robustness testing.
Moreover, in TDD, tests are created before developing the functionality, conflicting with the typical
robustness testing approach. This chapter discusses the integration of robustness testing in TDD for
improving the robustness of web services during development. The authors requested three programmers
to create a set of services based on open-source code and to implement different versions of the services
specified by TPC-App, using both TDD and the approach presented in this chapter. Results indicate that
TDD with robustness testing is an effective way to create more robust services.

INTRODUCTION

Web services are increasingly being used in
Service Oriented Environments as a strategic
vehicle for data exchange and software compo-
nent interoperability, providing a simple interface

between a service provider and a consumer. Inter-
action between service consumers and providers
is achieved by exchanging messages that comply
with the SOAP protocol, which, along with WSDL
and UDDI, constitute the core of the web services
technology (Curbera et al., 2002).

Web services are frequently complex software
components that can implement a composite ser-

Nuno Laranjeiro
Universidade de Coimbra, Portugal

Marco Vieira
Universidade de Coimbra, Portugal

DOI: 10.4018/978-1-4666-4301-7.ch004

51

Adapting Test-Driven Development to Build Robust Web Services

vice, in some cases using a set of external web
services. Software faults (i.e., program defects
or bugs) (Kalyanakrishnam, Kalbarczyk, & Iyer,
1999; Lee & Iyer, 1995) are a relevant cause of
computer failures and, research indicates that
web services are not different from other types
of software, in this matter (Vieira, Laranjeiro, &
Madeira, 2007a). With the increase of the software
complexity, the weight of software faults also
tends to increase.

Interface faults are related to problems in the
interaction among software components or mod-
ules (Weyuker, 1998) and are of utmost importance
in web services environments. Web services must
provide a robust interface to client applications
even when clients misuse the service by provid-
ing invalid input calls. Such invalid inputs may
result from bugs in the client applications, data
corruption caused by silent network failures, or
even security attacks. Obviously, in web services
compositions (a set of web services that work
together to achieve a goal), when a component
fails (by, for instance, throwing an unexpected
exception), the entire composition may be affected.
In fact, the execution results of subcomponents
(i.e., external services) can be seen as inputs for
the main service and are, in fact, a potential source
of robustness issues. Additionally, a particular web
service composition may use services provided by
external entities, which emphasizes the importance
of mitigating unexpected inputs to improve the
robustness of the overall composition.

Creating robust web services is a challenging
task. In fact, research and practice show that many
web services are being deployed on the web with
robustness problems (Vieira, Laranjeiro, & Ma-
deira, 2007a), i.e., displaying unforeseen behaviors
when handling invalid inputs. Among other ef-
fects, these robustness issues can result in security
vulnerabilities due to the lack (or incorrect use)
of input validation. A frequently observed case
is the presence of SQL Injection vulnerabilities,
where unchecked inputs are exploited by hackers

with the goal of modifying the structure of a SQL
command (Stuttard & Pinto, 2007).

Test-Driven Development (TDD) (Beck, 2003)
is an agile software development technique based
on test cases that define new software function-
alities or improvements (i.e., unit tests specify
the requirements and are created before writing
the functionality code itself). Development then
follows in short iterations, where the developer
creates the code that is required for the tests to pass.
The process explicitly incorporates changes (via
refactoring) as a means to improve code quality.
Despite this, the definition of test cases that assure
high coverage is quite demanding and developers
tend to focus on the creation of tests that satisfy
the requirements in normal situations, while often
disregarding the verification of limit condition,
such as the ones targeted by robustness testing.

Robustness testing can characterize the
behavior of a particular system in presence of
invalid input conditions (Mukherjee & Siewio-
rek, 1997). Web services robustness testing is an
after-development technique that has its origin
in traditional robustness testing approaches
(Koopman & DeVale, 1999; Rodríguez, Salles,
Fabre, & Arlat, 1999), typically used to assess of
robustness of operating systems and microkernels.
The fact that this testing technique was designed
to be executed after development conflicts with
the Test-Driven Development approach, which
requires the tests to be created before developing
the software functionalities.

In previous work we presented a preliminary
approach that illustrates how to use robustness
testing in a Test-Driven Development environ-
ment (Laranjeiro & Vieira, 2009) and focuses on
basic required adaptations on both techniques. In
this paper we present a thorough methodologi-
cal view on how Test-Driven Development can
be extended to include robustness testing. The
approach is discussed in detail from a software
development process point-of-view, while still
including the theoretical and technical aspects

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/adapting-test-driven-development-build/77699

Related Content

Social Networks Discovery Based on Information Retrieval Technologies and Bees Swarm

Optimization: Application to DBLP
Yassine Driasand Habiba Drias (2014). International Journal of Systems and Service-Oriented Engineering

(pp. 46-65).

www.irma-international.org/article/social-networks-discovery-based-on-information-retrieval-technologies-and-bees-

swarm-optimization/117768

A Case Study of Dynamic Analysis to Locate Unexpected Side Effects Inside of Frameworks
Izuru Kume, Masahide Nakamura, Naoya Nittaand Etsuya Shibayama (2015). International Journal of

Software Innovation (pp. 26-40).

www.irma-international.org/article/a-case-study-of-dynamic-analysis-to-locate-unexpected-side-effects-inside-of-

frameworks/126614

Applying Software Engineering Design Principles to Agile Architecture
Chung-Yeung Pang (2020). Software Engineering for Agile Application Development (pp. 82-108).

www.irma-international.org/chapter/applying-software-engineering-design-principles-to-agile-architecture/250438

Aligning Supply Chain Logistics Costs via ERP Coordination
Joseph R. Muscatello, Diane H. Parenteand Matthew Swinarski (2018). International Journal of Information

System Modeling and Design (pp. 24-43).

www.irma-international.org/article/aligning-supply-chain-logistics-costs-via-erp-coordination/216459

Balancing Security and Performance Properties During System Architectural Design
Siv Houmb, Geri Georg, Dorina Petriu, Behzad Bordbar, Indrakshi Ray, Kyriakos Anastasakisand Robert

France (2011). Software Engineering for Secure Systems: Industrial and Research Perspectives (pp. 155-

191).

www.irma-international.org/chapter/balancing-security-performance-properties-during/48409

http://www.igi-global.com/chapter/adapting-test-driven-development-build/77699
http://www.irma-international.org/article/social-networks-discovery-based-on-information-retrieval-technologies-and-bees-swarm-optimization/117768
http://www.irma-international.org/article/social-networks-discovery-based-on-information-retrieval-technologies-and-bees-swarm-optimization/117768
http://www.irma-international.org/article/a-case-study-of-dynamic-analysis-to-locate-unexpected-side-effects-inside-of-frameworks/126614
http://www.irma-international.org/article/a-case-study-of-dynamic-analysis-to-locate-unexpected-side-effects-inside-of-frameworks/126614
http://www.irma-international.org/chapter/applying-software-engineering-design-principles-to-agile-architecture/250438
http://www.irma-international.org/article/aligning-supply-chain-logistics-costs-via-erp-coordination/216459
http://www.irma-international.org/chapter/balancing-security-performance-properties-during/48409

