
479

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 24

DOI: 10.4018/978-1-4666-4301-7.ch024

A Framework for Testing Code
in Computational Applications

ABSTRACT

The aim of this chapter is to provide guidance on the challenges and approaches to testing computational
applications. Testing in our case is focused on code testing for accuracy as opposed to validating the
science models or testing user interfaces. A testing framework is used to present the different challenges.
Discussions cover topics such as test oracles and the tolerance problem, testing to address specific goals
rather than testing as a process, areas of risk inherent in developing and using computational software,
a testing mindset, and the use of technical reviews. Three observational studies are included to illustrate
different techniques, problems, and approaches. There is no prescribed way of testing computational
code. Instead, an awareness of risks and challenges inherent in computational software can provide the
necessary guidance.

INTRODUCTION

Mistakes find their way into all nontrivial pieces
of software. This is supported by both our experi-
ences and by published research. For example, Les
Hatton (1997) conducted a series of experiments
in which he found that some scientific programs
thought to be “fully tested” (p. 30) harboured
serious code faults.

For scientific software to be trusted, the
developers of scientific software must make a
reasonable effort to detect and correct the faults
in their code. This reality is strongly expressed by
Donoho, Maleki, Shahram, Ur Rahman, & Stodden
(2009) in an article on reproducible computational
research in which they write:

Many scientists accept computation (for example,
large-scale simulation) as the third branch [of
science—alongside deductive and empirical

Diane Kelly
Royal Military College, Canada

Daniel Hook
Engineering Seismology Group, Canada

Rebecca Sanders
EA Pogo, Canada

480

A Framework for Testing Code in Computational Applications

branches]...However, it does not yet deserve
elevation to third-branch status because current
computational science practice doesn’t generate
routinely verifiable knowledge. Before scientific
computation can be accorded the status it aspires
to, it must be practiced in a way that accepts the
ubiquity of error, and work then to identify and
root out error. (pp. 8-9).

Many activities may be involved in the quest to
identify and root out errors in artifacts of scientific
processes. For example, to help root out errors in
deductive science and mathematics the resulting
artifacts (for example, equations) are subjected
to peer review. Similarly, computational artifacts
should be scrutinized. However, just as artifacts
of deductive science cannot be reviewed in the
same way as artifacts of empirical science (such as
physical measurements), reviews of computational
artifacts must be carried out in a way uniquely
suited to the principal artifact of the computational
process, program code. In this chapter we will focus
on two approaches to the review of program code:
code testing and technical review. Both of these
approaches will be grouped under the umbrella
term code scrutinization.

Some topics are not addressed in this chapter.
Firstly, we do not discuss the validation of the
scientific models that underlie scientific programs.
Although it is critical that scientific programs be
built from appropriate scientific models, it is also
critical that models are realized in code reasonably
and accurately. Scientists are experts at evaluating
scientific models, but they are not necessarily ex-
perts at evaluating codes that realize these models.
In our research (Sanders and Kelly, 2009) and work
experiences, we have found that strong model vali-
dation practices are often not matched by strong
code scrutinization practices. For that reason, this
chapter avoids discussions of model validation and
devotes itself to code scrutinization.

Secondly, we do not discuss numerical meth-
ods. Selection of numerical methods, solution
techniques, and algorithms can have a strong

influence on the accuracy of a program, but it is
not our aim to instruct the reader on how to choose
appropriate algorithms. Numerous introductory
and advanced textbooks already offer good cover-
age of the topic. However, we encourage strong
code scrutinization practices to help scientists
discover excessive inaccuracies resulting from
weak algorithms.

Thirdly, we do not discuss the testing of routines
that interact with the world outside the program.
Instead, we focus primarily on the testing of
computational engines.

A Note on Terminology

In the remainder of this chapter, when we use
the word error we mean the quantitative differ-
ence between a measured or calculated value of
a quantity and what is considered to be its actual
value. To indicate a code mistake we will use the
word fault. Note, therefore, that a fault is not an
error, but a fault can lead to an error.

DESCRIPTION OF A
TESTING FRAMEWORK

In general, testing is an investigative activity done
to improve knowledge about the state of the soft-
ware under test. Each test is an experimental trial
of the software. Tests contribute empirical data
required to answer questions about the software.
A testing effort will have knowledge goals that
tests should fulfill when taken in aggregate.

We describe a testing framework that allows the
scientist to better understand how to match their
situation to a testing approach. It requires defining
the context of the testing effort by gathering the
right information and asking the right questions,
establishing achievable goals, designing a set of
tests that can achieve the goals using appropriate
testing techniques, and using the data from test
executions to decide whether testing adequately
achieves the knowledge goals.

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/framework-testing-code-computational-

applications/77719

Related Content

Evolutionary Approaches to Test Data Generation for Object-Oriented Software: Overview of

Techniques and Tools
Ana Filipa Nogueira, José Carlos Bregieiro Ribeiro, Francisco Fernández de Vegaand Mário Alberto

Zenha-Rela (2022). Research Anthology on Agile Software, Software Development, and Testing (pp. 884-

909).

www.irma-international.org/chapter/evolutionary-approaches-to-test-data-generation-for-object-oriented-software/294500

Requirements Engineering for Technical Products: Integrating Specification, Validation and

Change Management
Barbara Paech, Christian Denger, Daniel Kerkowand Antje von Knethen (2005). Requirements Engineering

for Sociotechnical Systems (pp. 153-169).

www.irma-international.org/chapter/requirements-engineering-technical-products/28408

A Tool Support for Secure Software Integration
Khaled Md Khanand Jun Han (2010). International Journal of Secure Software Engineering (pp. 35-56).

www.irma-international.org/article/tool-support-secure-software-integration/43925

Generation of Concurrency Control Program by Extending Functions in Genetic Programming
Teruhisa Hochin, Tatsuya Saigo, Shinji Tamuraand Hiroki Nomiya (2014). International Journal of Software

Innovation (pp. 13-27).

www.irma-international.org/article/generation-of-concurrency-control-program-by-extending-functions-in-genetic-

programming/120516

ICHC Framework: NoSql Data Model and a Microservices-Based Solution for a Cultural Heritage

Platform
Ouadie Abdelmoumniand Noureddine Chenfour (2022). International Journal of Software Innovation (pp. 1-

16).

www.irma-international.org/article/ichc-framework/293272

http://www.igi-global.com/chapter/framework-testing-code-computational-applications/77719
http://www.igi-global.com/chapter/framework-testing-code-computational-applications/77719
http://www.irma-international.org/chapter/evolutionary-approaches-to-test-data-generation-for-object-oriented-software/294500
http://www.irma-international.org/chapter/requirements-engineering-technical-products/28408
http://www.irma-international.org/article/tool-support-secure-software-integration/43925
http://www.irma-international.org/article/generation-of-concurrency-control-program-by-extending-functions-in-genetic-programming/120516
http://www.irma-international.org/article/generation-of-concurrency-control-program-by-extending-functions-in-genetic-programming/120516
http://www.irma-international.org/article/ichc-framework/293272

