
749

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 36

DOI: 10.4018/978-1-4666-4301-7.ch036

Reengineering Structured
Legacy System

Documentation to UML
Object-Oriented Artifacts

ABSTRACT

The need for reengineering of software systems has dramatically increased as legacy systems are migrated
to new platforms and rewritten in modern object-oriented languages. Although the de facto standard for
describing object-oriented systems is the Unified Modeling Language (UML), many legacy systems have
been documented using non-object-oriented structured analysis and design methods. Problems arise in the
migration because non-object-oriented documentation is inherently not conducive to the development of
object-oriented systems. This chapter presents a set of rules to automate the conversion of systems which
were originally modeled using structured techniques to UML. The newly created UML documentation
can then be used in developing an object-oriented equivalent system. The UML model may also be used
by computer aided software engineering tools to implement a new system. The reengineering rules are
tested on an example structured system to demonstrate their viability.

INTRODUCTION

Software reengineering was defined by Chikovsky
and Cross as “the examination and alteration of a
system to reconstitute it in a new form” (1990).
The need for software reengineering has drastically

increased as legacy systems become obsolete in
terms of their architecture, the platforms on which
they run, and their maintainability. Software en-
gineering is important for recovering and reusing
existing software assets, reducing high software
maintenance costs, and establishing a stable,
maintainable base for future software evolution.

Terrence P. Fries
Indiana University of Pennsylvania, USA

750

Reengineering Structured Legacy System Documentation to UML Object-Oriented Artifacts

Software change is inevitable as the Y2K
problem demonstrated. Changes in currency,
government regulations, technology changes, and
new and constantly changing business require-
ments necessitate modifications to the software in
legacy systems. As systems evolve over time, they
inevitably undergo changes that result in the de-
generation of the original architecture. In an effort
to expedite system modifications, documentation
of the changes is often ignored or incomplete. The
degeneration may be so severe that further changes
result in an unstable system. When systems reach
this state they require a complete resign. In ad-
dition, many legacy systems were developed for
platforms that have become obsolete (Hochstein
& Lindvall, 2005). When a legacy system requires
migration to a new platform or redesign, the soft-
ware development paradigm is almost exclusively
that of object-oriented (OO) analysis and design
(Schach, 2010; Pressman, 2009; Booch, Maksim-
chuk, Engel, Young, Conallen, & Houston, 2007).
The OO paradigm is applicable for such modern
platforms as Web-based applications, distributed
systems, component-based systems, model-driven
architecture (MDA), and service oriented archi-
tecture (SOA).

Due to its widespread use, the unified model-
ing language has become the de facto standard for
modeling the architecture and behavior of software
systems (Booch, Jacobson & Rumbaugh, 2005;
Rumbaugh, 2004; Fowler, 2003). UML is also
the visual modeling tool for the widely accepted
object-oriented and design paradigm referred to
as the Unified Process (Jacobson, Booch & Rum-
baugh, 1999; Arlow & Neustadt, 2007). While
UML is usually associated with object-oriented
systems, its use for non-object-oriented systems
is becoming common. However, many legacy sys-
tems have been documented with for non-object-
oriented methods, primarily structured analysis
and structured design (SASD) (DeMarco, 1978;
Gane & Sarson, 1977; Yourdon, 1989; Yourdon
& Constantine, 1989). The most common artifacts

produced by SASD are data flow diagrams (DFD)
and entity relationship diagrams (ERD).

There are many problems in understanding a
legacy system. They may be written in an outdated
programming language and may contain numer-
ous modifications. Modifications are frequently
“kludges” (clumsy or inelegant solutions to a
problem) that make the program impossible to
comprehend. Software engineers require UML
documentation to aid in the maintenance of these
systems.

As legacy systems are reengineered to use
modern object-oriented languages and techniques,
it is necessary to convert the existing SASD
models to UML. Documentation is essential in
the understanding of legacy systems. UML dia-
grams have been shown to be an effective aid in
program understanding. The new UML model can
act as the basis for design and implementation of
the new system, as well as documentation for the
future evolution of the new system. In addition,
computer aided software engineering tools can
use the UML format for quality assurance and
automatic code generation.

This chapter defines a set of formal rules for
reengineering a legacy system document using
SASD data flow diagrams and entity relation-
ship diagrams into an object-oriented system
defined by UML 2.0 artifacts. The Background
section presents the transformation framework.
The Reengineering Framework and Case Study
sections illustrate and confirm the correctness of
the framework by applying it to a test case. The
Conclusions section summarizes the research and
discusses future work.

BACKGROUND

Many attempts have been made to reengineer
legacy systems to newer platforms and program-
ming languages. These approaches fall into three
general categories: language specific, architecture
specific, and language/architecture independent.

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reengineering-structured-legacy-system-

documentation/77731

Related Content

Runtime Integration Capability for Distributed Model Driven Applications
Jon Davis (2013). Progressions and Innovations in Model-Driven Software Engineering (pp. 147-180).

www.irma-international.org/chapter/runtime-integration-capability-distributed-model/78211

Network Security Monitoring by Combining Semi-Supervised Learning and Active Learning
Yun Pan (2022). International Journal of Information System Modeling and Design (pp. 1-9).

www.irma-international.org/article/network-security-monitoring-by-combining-semi-supervised-learning-and-active-

learning/313578

Importance of Systems Engineering in the Development of Information Systems
Miroljub Kljajicand John V. Farr (2010). Emerging Systems Approaches in Information Technologies:

Concepts, Theories, and Applications (pp. 51-66).

www.irma-international.org/chapter/importance-systems-engineering-development-information/38173

Detection and Classification of Brain Tumors From MRI Images Using a Deep Convolutional

Neural Network Approach
Brahami Menaouer, Kebir Nour El-Houda, Dermane Zoulikha, Sabri Mohammedand Nada Matta (2022).

International Journal of Software Innovation (pp. 1-25).

www.irma-international.org/article/detection-and-classification-of-brain-tumors-from-mri-images-using-a-deep-

convolutional-neural-network-approach/293269

Measuring the Efficiency of Free and Open Source Software Projects Using Data Envelopment

Analysis
Stefan Koch (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 2963-

2977).

www.irma-international.org/chapter/measuring-efficiency-free-open-source/29545

http://www.igi-global.com/chapter/reengineering-structured-legacy-system-documentation/77731
http://www.igi-global.com/chapter/reengineering-structured-legacy-system-documentation/77731
http://www.irma-international.org/chapter/runtime-integration-capability-distributed-model/78211
http://www.irma-international.org/article/network-security-monitoring-by-combining-semi-supervised-learning-and-active-learning/313578
http://www.irma-international.org/article/network-security-monitoring-by-combining-semi-supervised-learning-and-active-learning/313578
http://www.irma-international.org/chapter/importance-systems-engineering-development-information/38173
http://www.irma-international.org/article/detection-and-classification-of-brain-tumors-from-mri-images-using-a-deep-convolutional-neural-network-approach/293269
http://www.irma-international.org/article/detection-and-classification-of-brain-tumors-from-mri-images-using-a-deep-convolutional-neural-network-approach/293269
http://www.irma-international.org/chapter/measuring-efficiency-free-open-source/29545

