
999

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 48

DOI: 10.4018/978-1-4666-4301-7.ch048

ABSTRACT

Security inspections are increasingly important for bringing security-relevant aspects into software sys-
tems, particularly during the early stages of development. Nowadays, such inspections often do not focus
specifically on security. With regard to security, the well-known and approved benefits of inspections are
not exploited to their full potential. This book chapter focuses on the Security Goal Indicator Tree applica-
tion for eliminating existing shortcomings, the training that led to their creation in an industrial project
environment, their usage, and their reuse by a team in industry. SGITs are a new approach for modeling
and checking security-relevant aspects throughout the entire software development lifecycle. This book
chapter describes the modeling of such security goal based trees as part of requirements engineering using
the GOAT tool dedicated plug-in and the retrieval of these models during the various phases of the software
development lifecycle in a project by means of Software Vulnerability Repository Services (SVRS) created
in the European project SHIELDS (SHIELDS - Detecting known security vulnerabilities from within design
and development tools).

Creating and Applying Security
Goal Indicator Trees in an

Industrial Environment
Alessandra Bagnato
TXT e-solutions, Italy

Fabio Raiteri
TXT e-solutions, Italy

Christian Jung
Fraunhofer Institute for Experimental Software Engineering, Germany

Frank Elberzhager
Fraunhofer Institute for Experimental Software Engineering, Germany

1000

Creating and Applying Security Goal Indicator Trees in an Industrial Environment

INTRODUCTION

Software security is still a challenging problem that
affects software producers from small developer
teams up to big vendors. The increasing complex-
ity of software systems makes handling security
ever more difficult. In addition, most software
developers have insufficient knowledge regarding
security aspects and use immature quality assur-
ance techniques for preventing security defects
across the entire software development lifecycle
(SDLC), which aggravates the problem of secure
software engineering.

Current quality assurance techniques for en-
suring software security are, e.g., testing methods
such as fuzzing (Sutton, Greene, & Amini, 2007),
(Takanen, DeMott, & Miller, 2008), penetration
testing (Arkin, Stender, & McGraw, 2005), or
software inspections (Howard, 2006). Inspections
– the systematic manual checking of a piece of
software for certain defects – are one of the most
effective and efficient quality assurance techniques
(P. Runeson, C. Andersson, T. Thelin, A. Andrews,
and T. Berling, 2006), (Wiegers, 2002). However,
inspections often do not focus on security. Thus,
the well-known and approved software inspec-
tions do not exploit their full potential regarding
security. Adapting them to security needs is a
challenging and time-consuming task, which
requires appropriate security knowledge.

Detecting security-relevant defects too late
in the development often leads to expensive cor-
rections. Even worse is the deployment of faulty
and insecure software, which may result in a bad
reputation. Hence, interest in improving security
inspections is widespread (Evans & Larochelle,
2002). In order to improve security inspections,
a method for supporting inspections early in the
SDLC has been developed. The approach provides
structured reading support for the inspector during
the inspection of a development artifact.

Security Goal Indicator Trees (SGITs), which
are introduced in (Peine, Jawurek, & Mandel,
2008), were developed to improve guidance for

focused security inspections. SGITs are tree-
structured models in which the root node defines
the general security goal. This goal is hierarchically
decomposed into indicators that can be inspected
independently. These indicators guide the inspec-
tor through the inspection process by subdividing
complex security goals into a set of simple aspects
that can be verified more easily. Best practices or
principles of secure software engineering can be
modeled as an SGIT. In order to achieve a specific
security goal, the inspector has to map indicators
of the model onto individual parts of the software
or relevant parts from the specification documents
in order to decide whether they have been fulfilled
or not. Thus, our new inspection approach provides
well-defined criteria that either have to be avoided
in case the indicator might violate the achievement
of the security goal (traditional inspection focus)
or have to be fulfilled to reach the security goal
(expanding the traditional inspection focus).

An inspector with little security background
(e.g., a software developer) is able to perform
security inspections by using this approach, due
to the fact that the security knowledge is covered
by the model (i.e., the SGIT). This reduces the
burden on security experts and still permits to
ensure security in software products. Thus, the
approach using SGITs bridges the gap between
security experts and software practitioners without
any specific security expertise.

This book chapter discusses initial experi-
ence collected during the creation phase of new
SGITs and describes the elicitation and modeling
of new SGITs during the requirements analysis
phase in an industrial environment. Furthermore,
experiences gained from the process of deriving
security goals and their indicators in the require-
ments engineering phase are discussed by TXT
e-solutions S. p. A.

The book chapter outlines the approach us-
ing SGITs as reading support during inspection,
the e-tourism project in which the technique was
applied, the description of the software vulner-
ability repository service (SVRS) for storing the

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/creating-applying-security-goal-indicator/77743

Related Content

Service-Oriented Agents and Meta-Model Driven Implementation
Yinsheng Li, Hamada Ghenniwaand Weiming Shen (2005). Service-Oriented Software System

Engineering: Challenges and Practices (pp. 270-291).

www.irma-international.org/chapter/service-oriented-agents-meta-model/28959

Automatic Detection of Microaneurysms in Fundus Images
Jesús Eduardo Ochoa Astorga, Linni Wang, Shuhei Yamada, Yusuke Fujiwara, Weiwei Duand Yahui Peng

(2023). International Journal of Software Innovation (pp. 1-14).

www.irma-international.org/article/automatic-detection-of-microaneurysms-in-fundus-images/315658

An Introduction to Multiformalism Modeling
Marco Gribaudoand Mauro Iacono (2014). Theory and Application of Multi-Formalism Modeling (pp. 1-16).

www.irma-international.org/chapter/an-introduction-to-multiformalism-modeling/91938

Enhancing a Rigorous Reuse Process with Natural Language Requirement Specifications
Laura Felice, Carmen Leonardi, Liliana Favreand Maria Virginia Mauco (2002). Successful Software

Reengineering (pp. 129-142).

www.irma-international.org/chapter/enhancing-rigorous-reuse-process-natural/29973

Differentiated Process Support for Large Software Projects
Alf Inge Wangand Carl-Fredrik Sørensen (2009). Designing Software-Intensive Systems: Methods and

Principles (pp. 1-20).

www.irma-international.org/chapter/differentiated-process-support-large-software/8231

http://www.igi-global.com/chapter/creating-applying-security-goal-indicator/77743
http://www.irma-international.org/chapter/service-oriented-agents-meta-model/28959
http://www.irma-international.org/article/automatic-detection-of-microaneurysms-in-fundus-images/315658
http://www.irma-international.org/chapter/an-introduction-to-multiformalism-modeling/91938
http://www.irma-international.org/chapter/enhancing-rigorous-reuse-process-natural/29973
http://www.irma-international.org/chapter/differentiated-process-support-large-software/8231

