
1200

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 59

Design of Language
Learning Software

ABSTRACT

In this chapter, the authors focus on the principles and guidelines that should be borne in mind when
designing and developing (interactive multimedia) language software for foreign language learning. The
stages of software design and development can be categorized into six separate stages: (1) feasibility,
(2) setting up a team of experts, (3) designing, (4) programming, (5) testing, and (6) evaluating. Each
stage is vital to the design and development process for cost effective software, and a wide range of
principles and guidelines need to be borne in mind at each stage in order to design and develop effective
language learning software. Here, the authors focus on the design principles and guidelines that need
to be considered while designing and developing language software.

INTRODUCTION

It would not be wrong to say that there were limita-
tions to educational technology a decade ago, for
example, the diminished quality of compressed
video clips (Soboleva & Tronenko, 2002, pp. 488,
496). Software on the market used to be called
‘shovelware’ (Clifford, 1998, pp. 2-8; Le Mon,
1988, p. 39). Since then development in the field
of educational technology has occurred very rap-
idly. As a result, educational technology can now

enable us to design and develop technologically
very highly sophisticated software for Foreign
Language Learning (FLL). The main problem is
no longer the technological dimension.

However, there are still many programs for
FLL on the market some aspects of which are not
sophisticated pedagogically and psychologically
(Turel, 2010, p. 399; Draper, 2009, pp. 306-315;
Trinder, 2002, pp. 69-84; Ferney & Waller, 2001,
p. 156) although research in the field of language
software development has increased tremendously
(Hwa, et al., 2012, pp. 35-50; Abobaker & Hus-
sein, 2012, pp. 61-63; Godwin-Jones, 2010; Blake,

Vehbi Turel
The University of Bingol, Turkey

Peter McKenna
Manchester Metropolitan University, UK

DOI: 10.4018/978-1-4666-4301-7.ch059

1201

Design of Language Learning Software

2008; Zaphiris, 2006). Some programs even
feature spelling errors although written by native
speakers (TES Teacher, 2004, p. 18).

In short, problems now fundamentally stem
from materials writers, not the technology itself.
Therefore, to be able to design and develop cost
effective and professional software for FLL,
there are certain scientific educational findings
and implications that need to be implemented at
every single stage of program design and devel-
opment (Draper, 2009; Turel, 2004; Brett, 1999;
Peter, 1994).

In order for us to be able to create sophisticated
language software, teams of experts are needed
(Turel, 2004, p. 140). Under normal conditions, to
be able to create cost-effective software for FLL,
the active participation of most of the experts
below (depending on the type of the language
software program we want to create) is essential.
These are: (specialist language) teachers/experts,
programmers, graphic designers, audio engineers,
photographers, artists, voice actors, film directors/
specialists, musicians, animators, and (the target)
Language Learners (LLs) (see Figure 1).

The involvement of these experts is necessary
and important (Nicholson & Ngai, 1996, p. 3).
For instance, target LLs’ involvement, ‘produces
more useable and effective’ software (Nikolova,
2002, p. 112; Kennedy & McNaught, 1997, p. 6;
MacGregor, 1993, pp. 61, 63; Eraut, 1988), al-
though all materials that are based on findings
practically, to some extent, feature LLs’ involve-
ment indirectly, as the findings are very often
LLs’ preferences, views, ideas, progress etc.
Likewise, the lack of a specialist programmer
hinders not only the use of the maximum potential
of the tools, but also results in a lack of the
minimum requirements. In one project, for in-
stance, it came to a point where the developers
had to ask a ‘programming specialist to take over
… the software development work’ (Grob & Wolff,
2001, p. 249). Similarly, in Lyall and McNamara’s
(2000, p. 133) case, due to technical problems the
LLs encountered, many LLs did not continue
studying with the CALL program. In Debski and
Gruba’s (1999, pp. 219-239) study, the problems
in the computer classroom were mostly technol-
ogy related and the software was seen as unreliable

Figure 1. Potential experts that are essential for creating real sense cost effective language learning
software

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/design-language-learning-software/77754

Related Content

Stereo Seam Coupling and Depth Distortion Score in 3D Image Retargeting Using DMA

Algorithm
Mahendra Tulsiram Jagtapand Dineshkumar Jawalkar (2022). International Journal of Software Innovation

(pp. 1-10).

www.irma-international.org/article/stereo-seam-coupling-and-depth-distortion-score-in-3d-image-retargeting-using-dma-

algorithm/297506

Collaborative Requirements Definition Processes in Open Source Software Development
Stefan Dietze (2005). Requirements Engineering for Sociotechnical Systems (pp. 189-208).

www.irma-international.org/chapter/collaborative-requirements-definition-processes-open/28410

Determining Optimal Release and Testing Stop Time of a Software Using Discrete Approach
Avinash K. Shrivastavaand Ruchi Sharma (2022). International Journal of Software Innovation (pp. 1-13).

www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-

approach/297920

Developing Accessible Websites for Differently Abled People Using Open Source Tools
Prajwal S. Shirur, Saksham Raghuvanshiand Vikram Bali (2022). International Journal of Software

Innovation (pp. 1-21).

www.irma-international.org/article/developing-accessible-websites-for-differently-abled-people-using-open-source-

tools/303576

Project Management and Diagramming Software
Rizaldy Rapsing (2013). Software Development Techniques for Constructive Information Systems Design

(pp. 97-109).

www.irma-international.org/chapter/project-management-diagramming-software/75742

http://www.igi-global.com/chapter/design-language-learning-software/77754
http://www.irma-international.org/article/stereo-seam-coupling-and-depth-distortion-score-in-3d-image-retargeting-using-dma-algorithm/297506
http://www.irma-international.org/article/stereo-seam-coupling-and-depth-distortion-score-in-3d-image-retargeting-using-dma-algorithm/297506
http://www.irma-international.org/chapter/collaborative-requirements-definition-processes-open/28410
http://www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-approach/297920
http://www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-approach/297920
http://www.irma-international.org/article/developing-accessible-websites-for-differently-abled-people-using-open-source-tools/303576
http://www.irma-international.org/article/developing-accessible-websites-for-differently-abled-people-using-open-source-tools/303576
http://www.irma-international.org/chapter/project-management-diagramming-software/75742

