
1550

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 76

ABSTRACT

Despite the widespread use of sound project management practices and process improvement models
over the last several years, the failure of software projects remains a challenge to organisations. As
part of the attempt to address software industry challenges, several models, frameworks, and methods
have been developed that are intended to improve software processes to produce quality software on
time, under budget, and in accordance with previously stipulated functionalities. One of the most widely
practised methods is the Team Software Process (TSP). The TSP was designed to provide an operational
framework for establishing an effective team environment and guiding engineering teams in their work.
This chapter provides an overview of the TSP and its associated structures and processes. It also high-
lights how the TSP operational framework can assist project manager and software development team
to deliver successful projects by controlling and minimizing the most common software failure factors.
Comparative analysis between the TSP and conventional project management has also been presented.
Additionally, the results of TSP implementation in industrial settings are highlighted with particular
reference to scheduling, quality, and productivity. The last section indicates additional advantages of
TSP and comments on the future of TSP in the global software development project.

Managing Software
Projects with Team

Software Process (TSP)
Salmiza Saul Hamid

Two Sigma Technologies, Malaysia & University of Malaya, Malaysia

Mohd Hairul Nizam Md Nasir
University of Malaya, Malaysia

Shamsul Sahibuddin
Universiti Teknologi Malaysia, Malaysia

Mustaffa Kamal Mohd Nor
University of Malaya, Malaysia

DOI: 10.4018/978-1-4666-4301-7.ch076

1551

Managing Software Projects with Team Software Process (TSP)

INTRODUCTION

In this day and age, many government organiza-
tions and information technology based companies
develop and maintain software to support their
daily operations. The software turns out to be their
business product as well. The need for complex
software products to support businesses operations
are a very important issue nowadays. As projected
by Boehm (2006), between now and 2025, the sus-
tainability of the organizations and their products,
systems and services are much depending heavily
on software and this ever-increasing demands will
cause major differences in the processes currently
used to define, design, develop, deploy, and evolve
a diverse variety of software-intensive systems.
The statistics on software projects are discourag-
ing, as there is high percentage of projects that fail,
thereby not conforming to the requirements and
causing deviations in time and cost. These result
in poor quality products that lead to customer
dissatisfaction.

In striving to address the software industries
challenges, several frameworks and methods have
been developed covering all aspects of improv-
ing project management practices and software
processes purposely to produce quality software
on time, under budget and within pre-agreed
functionalities. One of the most widely practiced
methods is Team Software Process (TSP), which
has been implemented in wide range of organiza-
tions worldwide and gained positive results (Davis
& Mullaney, 2003).

This chapter provides an overview of the TSP
and its associated structures and processes. It also
highlights how the TSP operational framework can
assist project manager and software development
team to deliver successful projects by controlling
and minimizing the most common software failure
factors. Comparative analysis between the TSP
and conventional project management is also been
presented. Additionally, the results of TSP imple-
mentation in industrial settings are highlighted
with particular reference to scheduling, quality, and

productivity. The last section indicates additional
advantages of TSP and comments on the future of
TSP in the global software development project.

BACKGROUND

Software Crisis

The term “software engineering” was coined at
the first NATO Software Engineering Conference
in Germany in 1968 (Naur & Randell, 1969) amid
widespread consensus that there were problems
with software development and maintenance.
These problems were later discussed by Brooks
(1975, 1987, 1995), and the term “software cri-
sis” emerged to describe the software industry’s
inability to provide customers with high-quality
products within schedule and under budget. Brooks
concluded that there is no silver bullet to overcome
this problem. Hardware costs were dropping,
while software costs were rising rapidly. Major
computer system projects were sometimes years
late, and the resulting software was unreliable,
hard to maintain and performed poorly.

Since the 1980s, in the medical field, for
example, computers have been designed to help
people, and most of the time, they do. However,
in the case of Therac-25, computer errors could
be fatal. Between 1985 and 1987, two people died
and four others were seriously injured after they
received massive radiation beamed via Therac-25
radiation therapy machines. Investigations re-
vealed that defective software was among the
various factors leading to this accident (Leveson
& Turner, 1993). Another example is the delay of
over 16 months in the opening of Denver Interna-
tional Airport, in addition to construction costs of
over 100 million dollars in excess of the budget
(Swartz, 1996). Indeed, one main reason for the
delay and overrun was the presence of major
bugs in the baggage handling control software
(Glass, 1998). The explosion of the European
Space Agency rocket Ariane 5 40 seconds after

32 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/managing-software-projects-team-

software/77771

Related Content

Understanding the Role of Knowledge Management in Software Development: A Case Study in

Very Small Companies
Rory V. O'Connorand Shuib Basri (2014). International Journal of Systems and Service-Oriented

Engineering (pp. 39-52).

www.irma-international.org/article/understanding-the-role-of-knowledge-management-in-software-development/104653

Fault-Tolerant Software: Basic Concepts and Terminology
Vincenzo De Florio (2009). Application-Layer Fault-Tolerance Protocols (pp. 21-52).

www.irma-international.org/chapter/fault-tolerant-software/5122

Analyzing Human Factors for an Effective Information Security Management System
Reza Alavi, Shareeful Islam, Hamid Jahankhaniand Ameer Al-Nemrat (2013). International Journal of

Secure Software Engineering (pp. 50-74).

www.irma-international.org/article/analyzing-human-factors-effective-information/76355

Privacy Aware Systems: From Models to Patterns
Alberto Coen-Porisini, Pietro Colomboand Sabrina Sicari (2011). Software Engineering for Secure

Systems: Industrial and Research Perspectives (pp. 232-259).

www.irma-international.org/chapter/privacy-aware-systems/48412

Runtime Verification of Distributed Programs
Eslam Al Maghayreh (2012). Advanced Automated Software Testing: Frameworks for Refined Practice

(pp. 49-67).

www.irma-international.org/chapter/runtime-verification-distributed-programs/62150

http://www.igi-global.com/chapter/managing-software-projects-team-software/77771
http://www.igi-global.com/chapter/managing-software-projects-team-software/77771
http://www.irma-international.org/article/understanding-the-role-of-knowledge-management-in-software-development/104653
http://www.irma-international.org/chapter/fault-tolerant-software/5122
http://www.irma-international.org/article/analyzing-human-factors-effective-information/76355
http://www.irma-international.org/chapter/privacy-aware-systems/48412
http://www.irma-international.org/chapter/runtime-verification-distributed-programs/62150

