
1900

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 90

Software Reuse in Open Source:
A Case Study

ABSTRACT

A promising way to support software reuse is based on Component-Based Software Development (CBSD).
Open Source Software (OSS) products are increasingly available that can be freely used in product de-
velopment. However, OSS communities still face several challenges before taking full advantage of the
“reuse mechanism”: many OSS projects duplicate effort, for instance when many projects implement a
similar system in the same application domain and in the same topic. One successful counter-example
is the FFmpeg multimedia project; several of its components are widely and consistently reused in other
OSS projects. Documented is the evolutionary history of the various libraries of components within the
FFmpeg project, which presently are reused in more than 140 OSS projects. Most use them as black-box
components; although a number of OSS projects keep a localized copy in their repositories, eventually
modifying them as needed (white-box reuse). In both cases, the authors argue that FFmpeg is a success-
ful project that provides an excellent exemplar of a reusable library of OSS components.

INTRODUCTION

Reuse of software components is one of the most
promising practices of software engineering
(Basili & Rombach, 1991). Enhanced productivity
(as less code needs to be written), increased quality

(since assets proven in one project can be carried
through to the next) and improved business per-
formance (lower costs, shorter time-to-market) are
often pinpointed as the main benefits of develop-
ing software from a stock of reusable components
(Sametinger, 1997; Sommerville, 2004).

Although much research has focused on the
reuse of Off-The-Shelf (OTS) components, both

Andrea Capiluppi
Brunel University, UK

Klaas-Jan Stol
The Irish Software Engineering Research Centre, University of Limerick, Ireland

Cornelia Boldyreff
University of East London, UK

DOI: 10.4018/978-1-4666-4301-7.ch090

1901

Software Reuse in Open Source

Commercial OTS (COTS) and Open Source
Software (OSS), in corporate software production
(Li et al., 2009; Torchiano & Morisio, 2004), the
reusability of OSS projects in other OSS projects
has only recently started to draw the attention of
researchers and developers in OSS communities
(Lang et al., 2005; Mockus, 2007; Capiluppi &
Boldyreff, 2008). A vast amount of code is created
daily, modified and stored in OSS repositories, and
the inherent philosophy around OSS is indeed pro-
moting reuse. Yet, software reuse in OSS projects
is hindered by various factors, psychological and
technical. For instance, the project to be reused
could be written in a programming language that
the hosting project dislikes or is incompatible
with; the hosting project might not agree with the
design decisions made by the project to be reused;
finally, individuals in the hosting project may dis-
like individuals involved in the project to be reused
(Senyard & Michlmayr, 2004). A search for the
“email client” topic in the SourceForge reposi-
tory (http://www.sourcforge.net) produces 128
different projects (SourceForge, 2011): this may
suggest that similar features in the same domain
are implemented by different projects1, and that
code and features duplication play a significant
role in the production of OSS code.

The interest of practitioners and researchers
in the topic of software reuse has focused on two
predominant questions:

1. From the perspective of OSS integrators
(Hauge et al., 2007), how to select an OSS
component to be reused in another (poten-
tially commercial) software system, and

2. From the perspective of end-users, how to
provide a level of objective “trust” in avail-
able OSS components.

This interest is based on a sound reasoning;
given the increasing amount of source code and
documentation created and modified daily, it starts
to be a (commercially) viable solution to browse

for components in existing code and select existing,
working resources to reuse as building blocks of
new software systems, rather than building them
from scratch.

Among the reported cases of successful reuse
within OSS systems, components with clearly
defined requirements, and hardly affecting the
overall design (i.e., the “S” and “P” types of
systems following the original S-P-E classifica-
tion by Lehman (1980)) have often proven to be
the typically reused resources by OSS projects.
Reported examples include the “internationaliza-
tion” (often referred to as I18N) component (which
produces different output text depending on the
language of the system), or the “install” module
for Perl subsystems (involved in compiling the
code, test and install it in the appropriate locations)
(Mockus, 2007). To our best knowledge, there is
no academic literature about the successful reuse
of OSS, and an understanding of internal charac-
teristics of what makes a component reusable in
the OSS context is lacking.

The main focus of this paper is to report on
the FFmpeg project (http://ffmpeg.org/), and its
build-level components, and to show how some
of these components are currently reused in
other projects. This project is a cornerstone in
the multimedia domain; several dozens of OSS
projects reuse parts of FFmpeg, one of the most
widely reused being the libavcodec component.
In the domain of OSS multimedia applications,
libavcodec is the most widely adopted and reused
audio/video codec (coding and decoding) resource.
Its reuse by other OSS projects is so widespread
since it represents a crosscutting resource for a
wide range of systems, from single-user video
and audio players to converters and multimedia
frameworks. As such, FFmpeg represents a unique
case (Yin, 2003, p.40), which is why we selected
the project for this study.

In particular, the study is an attempt to evaluate
whether the reusability principle of “high cohe-
sion and loose coupling” (Fenton, 1991; Macro

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-reuse-open-source-case/77785

Related Content

Enabling Intelligence in Web-Based Collaborative Knowledge Management System
Krissada Maleewong, Chutiporn Anutariyaand Vilas Wuwongse (2011). International Journal of Systems

and Service-Oriented Engineering (pp. 40-59).

www.irma-international.org/article/enabling-intelligence-web-based-collaborative/55061

Use of Software Metrics to Improve the Quality of Software Projects Using Regression Testing
Arshpreet Kaur Sidhuand Sumeet Kaur Sehra (2022). Research Anthology on Agile Software, Software

Development, and Testing (pp. 399-411).

www.irma-international.org/chapter/use-of-software-metrics-to-improve-the-quality-of-software-projects-using-regression-

testing/294475

Modeling Trust Relationships for Developing Trustworthy Information Systems
Michalis Pavlidis, Shareeful Islam, Haralambos Mouratidisand Paul Kearney (2014). International Journal of

Information System Modeling and Design (pp. 25-48).

www.irma-international.org/article/modeling-trust-relationships-for-developing-trustworthy-information-systems/106933

Toward a Statistical Characterization of Computer Daihinmin
Seiya Okubo, Yuta Kado, Yamato Takeuchi, Mitsuo Wakatsukiand Tetsuro Nishino (2019). International

Journal of Software Innovation (pp. 63-79).

www.irma-international.org/article/toward-a-statistical-characterization-of-computer-daihinmin/217393

Trends in Improving Performances in Distributed Database Management Systems
Ismail Omar Hababehand Muthu Ramachandran (2010). Handbook of Research on Software Engineering

and Productivity Technologies: Implications of Globalization (pp. 396-422).

www.irma-international.org/chapter/trends-improving-performances-distributed-database/37045

http://www.igi-global.com/chapter/software-reuse-open-source-case/77785
http://www.irma-international.org/article/enabling-intelligence-web-based-collaborative/55061
http://www.irma-international.org/chapter/use-of-software-metrics-to-improve-the-quality-of-software-projects-using-regression-testing/294475
http://www.irma-international.org/chapter/use-of-software-metrics-to-improve-the-quality-of-software-projects-using-regression-testing/294475
http://www.irma-international.org/article/modeling-trust-relationships-for-developing-trustworthy-information-systems/106933
http://www.irma-international.org/article/toward-a-statistical-characterization-of-computer-daihinmin/217393
http://www.irma-international.org/chapter/trends-improving-performances-distributed-database/37045

