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Modeling for System’s 
Understanding

ABSTRACT

The purpose of this chapter is to provide an overview of System Dynamics model-
ing and to highlight its potential as a tool for system´s understanding. Although the 
work is not intended to cover all the activities involved in a simulation process, the 
authors present the steps in the modeling process. The authors first summarize the 
role of Causal Loop diagrams in the modeling process. The authors then introduce 
Stock-and-flow diagrams and describe how they can be defined using mathematical 
functions. Along this chapter the authors claim that System Dynamics is an adequate 
modeling tool for “partially reducible uncertainty” and “irreducible uncertainty” 
problems. Finally, the authors discuss that in System Dynamics, validity means ad-
equacy with respect to a purpose, and hence it cannot be made in absolute terms and 
the authors briefly introduce a set of techniques for testing structure and accuracy.

INTRODUCTION

Simulation is a fascinating tool given the wide range of domains of application, the 
ability to include probabilistic behavior, the flexibility to describe nonlinear relation-
ships, and the scalability for large systems. The complexities of the phenomena in 
the world force us to use simulation to understand much of anything about them. 
Complexity may arise from structural or dynamic aspects. Structural complexity 
refers to the number of components in a system, or the number of combinations one 
must consider in making a decision. In this case we face the combinatorial explosion 
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problem. In the literature there are many references to this problem which has im-
plications on the amount of resources needed to compute solutions (Pelánek, 2008).

Dynamic complexity arises because systems are dynamic, tightly coupled, 
governed by feedback, nonlinear, history-dependent, self-organizing, and adaptive 
(Sterman, 2000). To understand dynamic complexity, consider the evolution of a 
population. This is a dynamic system whose rules are very simple: the population 
grows according to a birth rate and decreases according to a death rate. Dynamic 
complexity is given by the interaction of these rules. If we know the rates with some 
precision then we can build a model and easily study the evolution of the system 
over time. On the other hand, if the size of the population varies by factors relevant, 
but unclear, then we can build a model to test our assumptions about the system’s 
behavior, but we can hardly use it as a forecasting tool. These observations lead us 
to think that there is a variety of degrees of difficulty when dealing with dynamic 
systems.

The level of uncertainty with regard to the behavior of a system determines the 
difficulty in building a model. At one extreme we have the systems whose rules are 
well known; for example, sales revenues can be estimated with an arbitrary degree 
of accuracy given enough demand data. If from the analysis of historical data we 
identify variables that partially explain the behavior of demand, then, we are in the 
presence of conditioning and unknown information. And hence model building is 
more challenging. Lo and Mueller analyze the role of quantitative methods in theory 
and practice (Lo & Mueller, 2010). Based on the classic work of Knight that distin-
guishes risk from uncertainty (Knight, 1921), Lo and Mueller propose a five-tiered 
categorization of uncertainty in any system, whether it be physical, economic, or 
political. The classification ranges from complete deterministic certainty (Level 1), 
exemplified by Newtonian mechanics, through noisy systems and those that must 
be described statistically because of incomplete knowledge about deterministic 
processes (Levels 3 or 4), to “irreducible uncertainty” (Level 5).

The level of uncertainty restricts the set of adequate modeling and analysis 
tools. A system with “risk without uncertainty” (Level 2) or with “fully reducible 
uncertainty” (Level 3), may be analyzed using classic probability theory or Monte 
Carlo simulation. But in the case of systems with “partially reducible uncertainty” 
(Level 4) or “irreducible uncertainty” (Level 5), we need a theory-building approach, 
such as System Dynamics.

System Dynamics modeling was developed by Jay W. Forrester and has gained 
relevance in recent years because of the need to model complex systems. System 
Dynamics postulates that the behavior of such systems results from the underly-
ing structure of flows, delays, and feedback loops (Forrester, Industrial Dynamics, 
1961). There is a tradition in the use of dynamic simulation to study problems in 
the social sciences. Currently, it is used in public health (Barlas, 2002; Horner & 
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