
 1581

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.26
Enhancing UML Models:
A Domain Analysis Approach

Iris Reinhartz-Berger
University of Haifa, Israel

Arnon Sturm
Bun-Gurion University of the Negev, Israel

AbstrAct

UML has been largely adopted as a standard
modeling language. The emergence of UML
from different modeling languages that refer to
various system aspects causes a wide variety of
completeness and correctness problems in UML
models. Several methods have been proposed for
dealing with correctness issues, mainly providing
internal consistency rules but ignoring correct-
ness and completeness with respect to the system
requirements and the domain constraints. In this
article, we propose addressing both complete-
ness and correctness problems of UML models
by adopting a domain analysis approach called
application-based domain modeling (ADOM). We
present experimental results from our study which
checks the quality of application models when
utilizing ADOM on UML. The results advocate
that the availability of the domain model helps

achieve more complete models without reducing
the comprehension of these models.

INtrODUctION

Conceptual modeling is fundamental to any area
where one has to cope with complex real-world
systems. The most popular, de-facto modeling
language today is UML, which is used for specify-
ing, visualizing, constructing, and documenting
the artifacts of software systems, as well as for
business modeling and other non-software sys-
tems (OMG-UML, 2003; OMG-UML, 2006).
Although UML provides convenient, standard
mechanisms for software engineers to represent
high-level system designs, as well as low-level
implementation details (Tilley & Huang, 2003),
it also introduces a variety of correctness and
completeness problems. According to Major and

1582

Enhancing UML Models

McGregor (1999), correctness is measured as how
accurately the model represents the information
specified within the requirements. For defining
the correctness of a model, a source that is as-
sumed to be (nearly) infallible is identified. This
source, termed a “test oracle,” is usually a human
expert whose personal knowledge is judged to be
sufficiently reliable to be used as a reference. The
accuracy of the model representation is measured
relatively to the results expected by the oracle.
Completeness, on the other hand, deals with the
necessity and usefulness of the model to repre-
sent the real life application, as well as the lack
of required elements within the model (Major &
McGregor, 1999). In other words, completeness
is judged as to whether the information being
modeled is described in sufficient details for the
established goals. This judgment is based on the
model’s ability to represent the required situations,
as well as on the knowledge of experts.

Different studies concluded that it is difficult
to model a correct and consistent application using
UML and even to understand such a specifica-
tion (Dori, 2001; Kabeli & Shoval, 2001; Peleg
& Dori, 2000; Reinhartz-Berger & Dori, 2005;
Siau & Cao; 2001). Several methods have been
suggested for checking the correctness of UML
models. However, these mainly deal with syn-
tactic issues directly derived from the modeling
language metamodel, neglecting the correctness
and completeness of the models with respect to
the domain constraints and the system require-
ments.

In this research we utilize the application-
based domain modeling (ADOM) approach
(Reinhartz-Berger & Sturm, 2004; Sturm &
Reinhartz-Berger, 2004), whose roots are in the
area of domain engineering, for enhancing UML
models. ADOM enables specifying and modeling
domain artifacts that capture the common knowl-
edge and the allowed variability in specific areas,
guiding the development of particular applications
in the area, and validating the correctness and
completeness of applications with respect to their

relevant domains. ADOM does these with regular
application and software engineering techniques
and languages, bridging the gap between the dif-
ferent abstraction levels at which application and
domain models reside and reducing learning and
training times. We present initial results from our
study which checks the comprehension and quality
of UML models when applying ADOM.

Following the introduction we review relevant
works from related areas and briefly introduce
the ADOM approach, emphasizing its usage for
developing correct and complete UML models. We
then elaborate on the experiment we conducted,
its hypotheses, settings, and results. Finally, we
summarize the advantages and limitations of
the proposed approach, raising topics for future
research.

LItErAtUrE rEVIEW

Shull, Russ and Basili (2000) defined six types of
software defects that can be found in object-orient-
ed designs: missing information, incorrect facts,
inconsistent information, ambiguous informa-
tion, extraneous information, and miscellaneous
defects. Incorrect facts, inconsistent information,
ambiguous information, and extraneous informa-
tion refer to the model correctness, while missing
information refers to completeness.

Several solutions have been proposed over the
years for handling these defects, mainly concern-
ing consistency and integration problems. These
solutions can be roughly divided into translation
and verification approaches. Translation ap-
proaches, such as Bowman et al. (2002), Rasch
& Wehrheim (2002), Mens, Van Der Straeten and
Simmonds (2003), Große-Rhode (2001), and Ba-
resi & Pezze (2001), translate multi-view models
into formal languages that can be analyzed by
model checkers. After detecting inconsistencies
or mistakes a backward process should be applied,
translating the locations where the defects were
found back to the multi-view models in order to

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/enhancing-uml-models/7993

Related Content

RDF(S) Store in Object-Relational Databases
Zongmin Ma, Daiyi Li, Jiawen Lu, Ruizhe Maand Li Yan (2024). Journal of Database Management (pp. 1-

32).

www.irma-international.org/article/rdfs-store-in-object-relational-databases/334710

State of the Art in Fuzzy Database Modeling
Jose Galindo, Angelica Urrutiaand Mario Piattini (2006). Fuzzy Databases: Modeling, Design and

Implementation (pp. 60-74).

www.irma-international.org/chapter/state-art-fuzzy-database-modeling/18760

Improving Sequence Diagram Modeling Performance: A Technique Based on Chunking,

Ordering, and Patterning
Thant Synand Dinesh Batra (2013). Journal of Database Management (pp. 1-25).

www.irma-international.org/article/improving-sequence-diagram-modeling-performance/100404

Theories of Meaning in Schema Matching: A Review
Joerg Evermann (2009). Database Technologies: Concepts, Methodologies, Tools, and Applications (pp.

282-308).

www.irma-international.org/chapter/theories-meaning-schema-matching/7917

Human Factors Research on Data Modeling: A Review of Prior Research, An Extended

Framework and Future Research Directions
Heikki Topiand V. Ramesh (2002). Journal of Database Management (pp. 3-19).

www.irma-international.org/article/human-factors-research-data-modeling/3276

http://www.igi-global.com/chapter/enhancing-uml-models/7993
http://www.irma-international.org/article/rdfs-store-in-object-relational-databases/334710
http://www.irma-international.org/chapter/state-art-fuzzy-database-modeling/18760
http://www.irma-international.org/article/improving-sequence-diagram-modeling-performance/100404
http://www.irma-international.org/chapter/theories-meaning-schema-matching/7917
http://www.irma-international.org/article/human-factors-research-data-modeling/3276

