
 2301

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.22
Integrating Projects from

Multiple Open Source
Code Forges

Megan Squire
Elon University, USA

AbstrAct

Much of the data about free, libre, and open
source (FLOSS) software development comes
from studies of code forges or code repositories
used for managing projects. This paper presents
a method for integrating data about open source
projects by way of matching projects (entities)
across multiple code forges. After a review of
the relevant literature, a few of the methods are
chosen and applied to the FLOSS domain, includ-
ing a comparison of some simple scoring systems
for pairwise project matches. Finally, the paper
describes limitations of this approach and recom-
mendations for future work.

IntroductIon

Free, libre or open source software (FLOSS)
development teams often use centralized code
forges, or repositories, to help manage their proj-

ect code, to provide a place for users to find the
product, and to organize the development team.
Although many FLOSS projects host their own
code repository and tools, many projects use the
tools hosted at a third-party web site (such as
Sourceforge, ObjectWeb, or Rubyforge). These
code forges provide basic project/team manage-
ment tools, as well as hosted space for the source
code downloads, a version control system, bug
tracking software, and email mailing lists. There
are also directories of FLOSS software (such as
Freshmeat and the Free Software Foundation
directory) that try to gather into one convenient
place material about projects interesting to a
particular community.

Much open source software engineering
research has been focused on gathering metrics
from code repositories. Many aspects of the
repository-based software development process
have been studied in depth, and repository data
collection is important for these studies (see
Conklin, 2006 for background). The FLOSSmole

2302

Integrating Projects from Multiple Open Source Code Forges

project (Howison, Conklin, and Crowston, 2005)
was created to consolidate metadata and analyses
from some of these repositories and directories
into a centralized collaboratory for use by re-
searchers in industry and academia. As of this
writing, FLOSSmole includes data and analyses
from Sourceforge, Freshmeat, Rubyforge, Ob-
jectWeb, Debian project, and the Free Software
Foundation (FSF) directory of free software. One
of the challenges mentioned in Conklin (2006) in
creating this kind of collaboratory is in integrat-
ing the data from these various sources. It seems
reasonable that a project might be listed on several
directories andhave a listing on a code forge.
However, sometimes a project will be listed in
multiple forges too, usually because the project
has migrated from one forge to another over time,
or because the project wishes to “grab” the unique
namespace for its project on a certain forge so it
will register at that forge without an intention to
ever actually use that space.

In any case, when integrating project data
from multiple sources, we must first identify
which project pairs are matches. In other words,
we want to find out which projects are listed on
multiple forges. For example, is the octopus project
on ObjectWeb the same as the octopus project on
Sourceforge or the project also called octopus on
Freshmeat? If we can devise a scoring system for
determining whether a project pair is a match, then
can we automate the matching process?

The focus of this article is entity matching
(and duplicate identification) for this kind of data
integration, as applied to the domain of FLOSS
projects. Section 2 outlines some terminology
from the study of data integration problems and
gives a background of entity matching algorithms.
Section 3 describes the FLOSS domain in terms
of entities and duplicates. Section 4 gives an
example of applying some of the algorithms for
entity matching to this domain. Section 5 outlines
limitations of this work and gives recommenda-
tions for future study.

About entIty mAtchIng

The act of integrating multiple data sets and find-
ing the resulting duplicate records (“matches”)
is nearly as old as database processing itself. In
practice and in the literature, this set of processes
is known by many names (Bitton and DeWitt,
1983; Hernandez and Stolfo, 1985; Winkler, 1999;
Garcia-Molina, 2006): merge/purge, object iden-
tification, object matching, object consolidation,
record linkage, entity matching, entity resolution,
reference reconciliation, deduplication, duplicate
identification, and name disambiguation. The term
entity matching will be used in this article.

Within the larger activity of data integration,
the act of matching entities is not to be confused
with the act of schema reconciliation. Schema
reconciliation refers to the act of matching up
columns or views in different data sources, and
using data or metadata to make the match. For
a trivial example, suppose a field in Table A is
called url but it is called home_ page in Table
B. To resolve these schemas, the analyst could
create a global schema or view that encapsulates
both underlying schemas. This task can be done
manually, or can be automated through various
machine learning techniques (such as Batini and
DeWitt, 1986; Doan, Domingos and Halevy, 2001;
Rahm and Bernstein, 2001). Schema reconciliation
and entity matching are related, but not identical,
tasks of data integration. Most often the schema
reconciliation will happen first, followed by the
“merge” task, and finally by the eventual “purge”
of duplicate data. However, if data sources are kept
separate throughout the matching process, then
the act of schema reconciliation could include a
“merge” between disparate entities.

Agree/disagree and
frequency-based matching

The simplest form of entity matching is what we
will call the agree/disagree method: take two

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/integrating-projects-multiple-open-source/8038

Related Content

Enhancing UML Models: A Domain Analysis Approach
Iris Reinhartz-Bergerand Arnon Sturm (2009). Database Technologies: Concepts, Methodologies, Tools,

and Applications (pp. 1581-1602).

www.irma-international.org/chapter/enhancing-uml-models/7993

The Expert’s Opinion
Journal of Database Management (1993). Journal of Database Management (pp. 39-41).

www.irma-international.org/article/expert-opinion/51116

Performance Implications of Knowledge Discovery Techniques in Databases
Balaji Rajagopalanand Ravindra Krovi (2003). Advanced Topics in Database Research, Volume 2 (pp. 191-

212).

www.irma-international.org/chapter/performance-implications-knowledge-discovery-techniques/4346

Identifying, Classifying, and Resolving Semantic Conflicts in Distributed Heterogeneous

Databases: A Case Study
Magdi Kamel (1995). Journal of Database Management (pp. 20-32).

www.irma-international.org/article/identifying-classifying-resolving-semantic-conflicts/51144

Automatic Categorization of Web Database Query Results
Xiangfu Meng, Li Yanand Z. M. Ma (2011). Advanced Database Query Systems: Techniques, Applications

and Technologies (pp. 1-27).

www.irma-international.org/chapter/automatic-categorization-web-database-query/52295

http://www.igi-global.com/chapter/integrating-projects-multiple-open-source/8038
http://www.irma-international.org/chapter/enhancing-uml-models/7993
http://www.irma-international.org/article/expert-opinion/51116
http://www.irma-international.org/chapter/performance-implications-knowledge-discovery-techniques/4346
http://www.irma-international.org/article/identifying-classifying-resolving-semantic-conflicts/51144
http://www.irma-international.org/chapter/automatic-categorization-web-database-query/52295

