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AbstrAct

Much of the data about free, libre, and open 
source (FLOSS) software development comes 
from studies of code forges or code repositories 
used for managing projects. This paper presents 
a method for integrating data about open source 
projects by way of matching projects (entities) 
across multiple code forges. After a review of 
the relevant literature, a few of the methods are 
chosen and applied to the FLOSS domain, includ-
ing a comparison of some simple scoring systems 
for pairwise project matches. Finally, the paper 
describes limitations of this approach and recom-
mendations for future work.

IntroductIon

Free, libre or open source software (FLOSS) 
development teams often use centralized code 
forges, or repositories, to help manage their proj-

ect code, to provide a place for users to find the 
product, and to organize the development team. 
Although many FLOSS projects host their own 
code repository and tools, many projects use the 
tools hosted at a third-party web site (such as 
Sourceforge, ObjectWeb, or Rubyforge). These 
code forges provide basic project/team manage-
ment tools, as well as hosted space for the source 
code downloads, a version control system, bug 
tracking software, and email mailing lists. There 
are also directories of FLOSS software (such as 
Freshmeat and the Free Software Foundation  
directory) that try to gather into one convenient 
place material about projects interesting to a 
particular community.

Much open source software engineering 
research has been focused on gathering metrics 
from code repositories. Many aspects of the 
repository-based software development process 
have been studied in depth, and repository data 
collection is important for these studies (see 
Conklin, 2006 for background). The FLOSSmole 
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project (Howison, Conklin, and Crowston, 2005) 
was created to consolidate metadata and analyses 
from some of these repositories and directories 
into a centralized collaboratory for use by re-
searchers in industry and academia. As of this 
writing, FLOSSmole includes data and analyses 
from Sourceforge, Freshmeat, Rubyforge, Ob-
jectWeb, Debian project, and the Free Software 
Foundation (FSF) directory of free software. One 
of the challenges mentioned in Conklin (2006) in 
creating this kind of collaboratory is in integrat-
ing the data from these various sources. It seems 
reasonable that a project might be listed on several 
directories andhave a listing on a code forge. 
However, sometimes a project will be listed in 
multiple forges too, usually because the project 
has migrated from one forge to another over time, 
or because the project wishes to “grab” the unique 
namespace for its project on a certain forge so it 
will register at that forge without an intention to 
ever actually use that space. 

In any case, when integrating project data 
from multiple sources, we must first identify 
which project pairs are matches. In other words, 
we want to find out which projects are listed on 
multiple forges. For example, is the octopus project 
on ObjectWeb the same as the octopus project on 
Sourceforge or the project also called octopus on 
Freshmeat? If we can devise a scoring system for 
determining whether a project pair is a match, then 
can we automate the matching process?

The focus of this article is entity matching 
(and duplicate identification) for this kind of data 
integration, as applied to the domain of FLOSS 
projects. Section 2 outlines some terminology 
from the study of data integration problems and 
gives a background of entity matching algorithms. 
Section 3 describes the FLOSS domain in terms 
of entities and duplicates. Section 4 gives an 
example of applying some of the algorithms for 
entity matching to this domain. Section 5 outlines 
limitations of this work and gives recommenda-
tions for future study.

About entIty mAtchIng

The act of integrating multiple data sets and find-
ing the resulting duplicate records (“matches”) 
is nearly as old as database processing itself. In 
practice and in the literature, this set of processes 
is known by many names (Bitton and DeWitt, 
1983; Hernandez and Stolfo, 1985; Winkler, 1999; 
Garcia-Molina, 2006): merge/purge, object iden-
tification, object matching, object consolidation, 
record linkage, entity matching, entity resolution, 
reference reconciliation, deduplication, duplicate 
identification, and name disambiguation. The term 
entity matching will be used in this article.

Within the larger activity of data integration, 
the act of matching entities is not to be confused 
with the act of schema reconciliation. Schema 
reconciliation refers to the act of matching up 
columns or views in different data sources, and 
using data or metadata to make the match. For 
a trivial example, suppose a field in Table A is 
called url but it is called home_ page in Table 
B. To resolve these schemas, the analyst could 
create a global schema or view that encapsulates 
both underlying schemas. This task can be done 
manually, or can be automated through various 
machine learning techniques (such as Batini and 
DeWitt, 1986; Doan, Domingos and Halevy, 2001; 
Rahm and Bernstein, 2001). Schema reconciliation 
and entity matching are related, but not identical, 
tasks of data integration. Most often the schema 
reconciliation will happen first, followed by the 
“merge” task, and finally by the eventual “purge” 
of duplicate data. However, if data sources are kept 
separate throughout the matching process, then 
the act of schema reconciliation could include a 
“merge” between disparate entities.

Agree/disagree and 
frequency-based matching

The simplest form of entity matching is what we 
will call the agree/disagree method: take two 
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