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Multiscale Filtering and 
Applications to Chemical 
and Biological Systems

ABSTRACT

Measured process data are a valuable source of information about the processes they are collected 
from. Unfortunately, measurements are usually contaminated with errors that mask the important fea-
tures in the data and degrade the quality of any related operation. Wavelet-based multiscale filtering is 
known to provide effective noise-feature separation. Here, the effectiveness of multiscale filtering over 
conventional low pass filters is illustrated though their application to chemical and biological systems. 
For biological systems, various online and batch multiscale filtering techniques are used to enhance the 
quality of metabolic and copy number data. Dynamic metabolic data are usually used to develop genetic 
regulatory network models that can describe the interactions among different genes inside the cell in 
order to design intervention techniques to cure/manage certain diseases. Copy number data, however, 
are usually used in the diagnosis of diseases by determining the locations and extent of variations in DNA 
sequences. Two case studies are presented, one involving simulated metabolic data and the other using 
real copy number data. For chemical processes it is shown that multiscale filtering can greatly enhance 
the prediction accuracy of inferential models, which are commonly used to estimate key process variables 
that are hard to measure. In this chapter, we present a multiscale inferential modeling technique that 
integrates the advantages of latent variable regression methods with the advantages of multiscale filter-
ing, and is called Integrated Multiscale Latent Variable Regression (IMSLVR). IMSLVR performance is 
illustrated via a case study using synthetic data and another using simulated distillation column data.
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INTRODUCTION

With the advancements in computing and sens-
ing technologies, large amounts of data are 
continuously collected from various engineer-
ing systems or processes. These data are a rich 
source of information about the systems they 
are collected from. Unfortunately, real data are 
usually contaminated with errors (or noise) that 
mask the important features in the data and affect 
their usefulness in practice. Therefore, measured 
process data need to be filtered to enhance their 
quality and usefulness. For example. In biologi-
cal systems, measured genomic data are used to 
construct genetic regulatory network models that 
describe the interactions among different genes 
within the cells (Jong, 2002; Chou et al., 2006; 
Gonzalez et al., 2007; Kutalik et al., 2007; Wang 
et al.,2010; Meskin et al., 2011b). These models 
are used not only to understand and predict the 
behavior of the biological system, but also to 
design intervention techniques that can be ulti-
mately used to manage and cure major phenotypes 
(Ervadi-Radhakrishnan & Voit, 2005; Meskin et 
al., 2011a). The presence of measurement noise 
in the data, however, degrades the accuracy of 
estimated genetic regulatory network models and 
the effectiveness of any intervention technique 
in which these model are used (Kutalik et al., 
2007; Wang et al., 2010). Also, Copy Number 
(CN) data are experimental biological data that 
are usually used in the diagnosis of diseases by 
determining the locations and extent of aberra-
tions in DNA sequences. CN data are usually 
very noisy, which makes it difficult to define 
the abnormal regions in the DNA (Alqallaf & 
Tewfik, 2007). Thus, it is important to filter 
biological data to improve their accuracy and the 
effectiveness of the applications in which they are 
used. In chemical processes, on the other hand, 
measured process data are usually used to develop 
empirical models, especially when fundamental 
models are difficult to obtain. An important 
example is inferential models, which are used 

to estimate key process variables, which are 
difficult to measure online from other variables 
that are easier to measure (Frank & Friedman, 
1993; Stone & Brooks, 1990; Kano et al., 2000; 
Wold, 1982). Unfortunately, the measured data 
used in estimating empirical models are usually 
contaminated with errors that degrade the qual-
ity of the models and their ability to predict the 
process behavior (Bakshi, 1999; Palavajjhala et 
al., 1996; Nounou & Nounou, 2005). Filtering 
these data will not only enhance the accuracy of 
estimated models, but also improve any operation 
(e.g., control, monitoring, etc.) in which these 
models are used.

In general, filtering techniques can be clas-
sified into three main categories: filtering with 
a model, filtering with an empirical model, and 
filtering without a model. Model-based filtering 
techniques minimize the error between the mea-
sured and filtered data while requiring the filtered 
data to satisfy the available model. Methods in 
this category include Kalman filtering (Sorenson, 
1985), Moving Horizon Estimation, and particle 
filtering (Rawlings & Bakshi, 2006). Of course, 
the quality of the filtered data depends on the 
accuracy of the models used. In practice, how-
ever, models are not usually available a priori. 
In the absence of a fundamental model and in 
the case of multivariate filtering, an empirical 
model that is extracted from the relationship 
between the measured variables can also be used 
in data filtering. Methods in this category include 
Principal Component Analysis (PCA) (Kramer 
& Mah, 1994). Since accurate process models 
usually are not easily obtained, the most widely 
used filtering methods do not rely on fundamen-
tal or empirical models, instead, they rely on 
information about the nature of the errors or the 
smoothness of the underlying signal. Examples 
of model-free filters include the well-known low 
pass filters, such as Finite Impulse Response 
(FIR) and Infinite Impulse Response (IIR) filters 
(Tham & Parr, 1994). Examples of FIR and IIR 
filters include the Mean Filter (MF) and the Ex-
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