IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Cross-Layer Design for Video Streaming Over 802.11e HCCA Wireless Network

A Cross-Layer Design for Video Streaming Over 802.11e HCCA Wireless Network
View Sample PDF
Author(s): Hongli Luo (Indiana University-Purdue University Fort Wayne, USA)
Copyright: 2011
Volume: 2
Issue: 3
Pages: 13
Source title: International Journal of Multimedia Data Engineering and Management (IJMDEM)
Editor(s)-in-Chief: Chengcui Zhang (University of Alabama at Birmingham, USA)and Shu-Ching Chen (University of Missouri-Kansas City, United States)
DOI: 10.4018/jmdem.2011070102

Purchase

View A Cross-Layer Design for Video Streaming Over 802.11e HCCA Wireless Network on the publisher's website for pricing and purchasing information.

Abstract

Video transmission over wireless networks has quality of service (QoS) requirements and the time-varying characteristics of wireless channels make it a challenging task. IEEE 802.11 Wireless LAN has been widely used for the last mile connection for multimedia transmission. In this paper, a cross-layer design is presented for video streaming over IEEE 802.11e HCF Controlled Channel Access (HCCA) WLAN. The goal of the cross-layer design is to improve the quality of the video received in a wireless network under the constraint of network bandwidth. The approach is composed of two algorithms. First, an allocation of optimal TXOP is calculated which aims at maintaining a short queuing delay at the wireless station at the cost of a small TXOP allocation. Second, the transmission of the packets is scheduled according to the importance of the packets in order to maximize the visual quality of video. The approach is compared with the standard HCCA on NS2 simulation tools using H.264 video codec. The proposed cross-layer design outperforms the standard approach in terms of the PSNRs of the received video. This approach reduces the packet loss to allow the graceful video degradation, especially under heavy network traffic.

Related Content

Yasasi Abeysinghe, Bhanuka Mahanama, Gavindya Jayawardena, Yasith Jayawardana, Mohan Sunkara, Andrew T. Duchowski, Vikas Ashok, Sampath Jayarathna. © 2024. 20 pages.
Chengxuan Huang, Evan Brock, Dalei Wu, Yu Liang. © 2023. 23 pages.
Duleep Rathgamage Don, Jonathan Boardman, Sudhashree Sayenju, Ramazan Aygun, Yifan Zhang, Bill Franks, Sereres Johnston, George Lee, Dan Sullivan, Girish Modgil. © 2023. 17 pages.
Wei-An Teng, Su-Ling Yeh, Homer H. Chen. © 2023. 17 pages.
Hemanth Gudaparthi, Prudhviraj Naidu, Nan Niu. © 2022. 20 pages.
Anchen Sun, Yudong Tao, Mei-Ling Shyu, Angela Blizzard, William Andrew Rothenberg, Dainelys Garcia, Jason F. Jent. © 2022. 19 pages.
Suvojit Acharjee, Sheli Sinha Chaudhuri. © 2022. 16 pages.
Body Bottom