IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

2D Numerical Study of a Micromixer Based on Blowing and Vortex Shedding Mechanisms

2D Numerical Study of a Micromixer Based on Blowing and Vortex Shedding Mechanisms
View Sample PDF
Author(s): Maria Sanchez-Claros (Universidad de Málaga, Spain), Joaquin Ortega-Casanova (Universidad de Málaga, Spain)and Francisco Jose Galindo-Rosales (Universidade do Porto, Portugal)
Copyright: 2019
Pages: 35
Source title: Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering
Source Author(s)/Editor(s): Harrson Silva Santana (University of Campinas, Brazil), João Lameu da Silva Jr (Federal Institute of Education, Science, and Technology of South of Minas Gerais, Brazil)and Osvaldir Pereira Taranto (University of Campinas, Brazil)
DOI: 10.4018/978-1-5225-7138-4.ch003

Purchase

View 2D Numerical Study of a Micromixer Based on Blowing and Vortex Shedding Mechanisms on the publisher's website for pricing and purchasing information.

Abstract

In this chapter, a numerical study and assessment of the mixing efficiency of a novel microfluidic device for mixing two fluids are presented. The device under study consists of a two-dimensional straight microchannel with a square pillar centered across the channel. The main fluid flows through the microchannel from the main inlet to the outlet, while the second fluid is injected through the pillar as two small jets at its upstream corners. For different values of the Reynolds number, intensity ratio between the jets and the main channel stream and jets injection angle, the authors have conducted several numerical simulations to characterize both the mixing efficiency and the required input power to make the fluids flow. The optimum configuration has been revealed for high values of the Reynolds number, low intensity ratios, and high injection angles. Thanks to vortex shedding and the corresponding downstream oscillations, a mixing efficiency of around 90% can be reached. The worst mixing efficiency is obtained for a configuration without vortex shedding, having a mixing efficiency of only around 2%.

Related Content

Daniel A. Beysens, Yves Garrabos, Bernard Zappoli. © 2021. 31 pages.
Sakir Amiroudine. © 2021. 23 pages.
Lin Chen. © 2021. 57 pages.
Victor Emelyanov, Alexander Gorbunov, Andrey Lednev. © 2021. 49 pages.
Nitesh Kumar, Dipankar Narayan Basu, Lin Chen. © 2021. 22 pages.
Kazuhiro Matsuda, Masanori Inui. © 2021. 35 pages.
Lin Chen. © 2021. 51 pages.
Body Bottom