IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Artificial Neural Networks to Improve Current Harmonics Identification and Compensation

Artificial Neural Networks to Improve Current Harmonics Identification and Compensation
View Sample PDF
Author(s): Patrice Wira (Université de Haute Alsace, France), Djaffar Ould Abdeslam (Université de Haute Alsace, France)and Jean Mercklé (Université de Haute Alsace, France)
Copyright: 2010
Pages: 35
Source title: Intelligent Industrial Systems: Modeling, Automation and Adaptive Behavior
Source Author(s)/Editor(s): Gerasimos Rigatos (Industrial Systems Institute & National Technical University of Athens, Greece)
DOI: 10.4018/978-1-61520-849-4.ch010

Purchase

View Artificial Neural Networks to Improve Current Harmonics Identification and Compensation on the publisher's website for pricing and purchasing information.

Abstract

Artificial Neural Networks (ANNs) have demonstrated very interesting properties in adaptive identification schemes and control laws. In this work, they are employed for the on-line control strategy of an Active Power Filter (APF) in order to improve its performance. Indeed, neural-based approaches are synthesized to design adaptive and efficient harmonic identification schemes. The proposed neural approaches are employed for compensating for the changing harmonic distortions introduced in a power distribution system by unknown nonlinear loads. The implementation of the ANNs has been optimized on a digital signal processor for real-time experiments. The feasibility of the implementation has been validated and the neural compensation schemes exhibit good performances compared to conventional approaches. By their learning capabilities, ANNs are able to take into account time-varying parameters such as voltage sags and harmonic content changes, and thus appreciably improve the performance of the APF compared to the one obtained with traditional compensating methods.

Related Content

Poshan Yu, Zixuan Zhao, Emanuela Hanes. © 2023. 29 pages.
Subramaniam Meenakshi Sundaram, Tejaswini R. Murgod, Madhu M. Nayak, Usha Rani Janardhan, Usha Obalanarasimhaiah. © 2023. 20 pages.
Rekha R. Nair, Tina Babu, Kishore S.. © 2023. 23 pages.
Wasswa Shafik. © 2023. 22 pages.
Jay Kumar Jain, Dipti Chauhan. © 2023. 24 pages.
George Makropoulos, Dimitrios Fragkos, Harilaos Koumaras, Nancy Alonistioti, Alexandros Kaloxylos, Vaios Koumaras, Theoni Dounia, Christos Sakkas, Dimitris Tsolkas. © 2023. 19 pages.
Shouvik Sanyal, Kalimuthu M., Thangaraja Arumugam, Aruna R., Balaji J., Ajitha Savarimuthu, Chandan Chavadi, Dhanabalan Thangam, Sendhilkumar Manoharan, Shasikala Patil. © 2023. 17 pages.
Body Bottom