IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Image Quality Assessment and Outliers Filtering in an Image-Based Animal Supervision System

Image Quality Assessment and Outliers Filtering in an Image-Based Animal Supervision System
View Sample PDF
Author(s): Ehsan Khoramshahi (University of Helsinki, Finland), Juha Hietaoja (University of Helsinki, Finland), Anna Valros (University of Helsinki, Finland), Jinhyeon Yun (University of Helsinki, Finland)and Matti Pastell (University of Helsinki, Finland)
Copyright: 2017
Pages: 17
Source title: Biometrics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-0983-7.ch049

Purchase

View Image Quality Assessment and Outliers Filtering in an Image-Based Animal Supervision System on the publisher's website for pricing and purchasing information.

Abstract

This paper presents a probabilistic framework for the image quality assessment (QA), and filtering of outliers, in an image-based animal supervision system (asup). The proposed framework recognizes asup's imperfect frames in two stages. The first stage deals with the similarity analysis of the same-class distributions. The objective of this stage is to maximize the separability measures by defining a set of similarity indicators (SI) under the condition that the number of permissible values for them is restricted to be relatively low. The second stage, namely faulty frame recognition (FFR), deals with asup's QA training and real-time quality assessment (RTQS). In RTQS, decisions are made based on a real-time quality assessment mechanism such that the majority of the defected frames are removed from the consecutive sub routines that calculate the movements. The underlying approach consists of a set of SI indexes employed in a simple Bayesian inference model. The results confirm that a significant amount of defected frames can be efficiently classified by this approach. The performance of the proposed technique is demonstrated by the classification on a cross-validation set of mixed high and low quality frames. The classification shows a true positive rate of 88.6% while the false negative rate is only about 2.5%.

Related Content

Ajay Rawat, Shivani Gambhir. © 2017. 19 pages.
Abhijit Chandra, Srideep Maity. © 2017. 15 pages.
Swanirbhar Majumder, Saurabh Pal. © 2017. 26 pages.
Fouad Farouk Jabri. © 2017. 32 pages.
Francisco Pacheco Andrade, Teresa Coelho Moreira. © 2017. 13 pages.
Swanirbhar Majumder, Smita Majumder. © 2017. 31 pages.
Yuanfang Guo, Oscar C. Au, Ketan Tang. © 2017. 20 pages.
Body Bottom