IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Infrastructure Sustainability: Differential Axial Shortening of Concrete Structures

Infrastructure Sustainability: Differential Axial Shortening of Concrete Structures
View Sample PDF
Author(s): Praveen Moragaspitiya (Queensland University of Technology, Australia), David Thambiratnam (Queensland University of Technology, Australia), Nimal Perera (Queensland University of Technology, Australia)and Tommy Chan (Queensland University of Technology, Australia)
Copyright: 2010
Pages: 10
Source title: Rethinking Sustainable Development: Urban Management, Engineering, and Design
Source Author(s)/Editor(s): Tan Yigitcanlar (Queensland University of Technology, Australia)
DOI: 10.4018/978-1-61692-022-7.ch014

Purchase

View Infrastructure Sustainability: Differential Axial Shortening of Concrete Structures on the publisher's website for pricing and purchasing information.

Abstract

High density development has been seen as a contribution to sustainable development. However, a number of engineering issues play a crucial role in the sustainable construction of high rise buildings. Non linear deformation of concrete has an adverse impact on high-rise buildings with complex geometries, due to differential axial shortening. These adverse effects are caused by time dependent behaviour resulting in volume change known as ‘shrinkage’, ‘creep’ and ‘elastic’ deformation. These three phenomena govern the behaviour and performance of all concrete elements, during and after construction. Reinforcement content, variable concrete modulus, volume to surface area ratio of the elements, environmental conditions, and construction quality and sequence influence on the performance of concrete elements and differential axial shortening will occur in all structural systems. Its detrimental effects escalate with increasing height and non vertical load paths resulting from geometric complexity. The magnitude of these effects has a significant impact on building envelopes, building services, secondary systems, and lifetime serviceability and performance. Analytical and test procedures available to quantify the magnitude of these effects are limited to a very few parameters and are not adequately rigorous to capture the complexity of true time dependent material response. With this in mind, a research project has been undertaken to develop an accurate numerical procedure to quantify the differential axial shortening of structural elements. The procedure has been successfully applied to quantify the differential axial shortening of a high rise building, and the important capabilities available in the procedure have been discussed. A new practical concept, based on the variation of vibration characteristic of structure during and after construction and used to quantify the axial shortening and assess the performance of structure, is presented.

Related Content

Mukul Bhatnagar, Nitin Pathak. © 2024. 16 pages.
Mitushi Singh, Mukul Bhatnagar. © 2024. 32 pages.
Vikas Sharma, Sanjay Taneja, Kshitiz Jangir, Kirti Khanna. © 2024. 15 pages.
Preet Kanwal. © 2024. 17 pages.
Kapil Sharma, Yogesh Kumar, Rajiv Khosla, Sanjay Taneja. © 2024. 16 pages.
Sanjeev Kumar, Mohammad Badruddoza Talukder, Firoj Kabir, Fahmida Kaiser. © 2024. 15 pages.
K. K. Kishore Mishra, Swati Priya, Syed Sajid Hussain, Swati Gupta. © 2024. 17 pages.
Body Bottom