IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Nonlinear Ultrasound Radiation-Force Elastography

Nonlinear Ultrasound Radiation-Force Elastography
View Sample PDF
Author(s): Alexia Giannoula (University of Toronto, Canada)and Richard S.C. Cobbold (University of Toronto, Canada)
Copyright: 2009
Pages: 19
Source title: Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications
Source Author(s)/Editor(s): Themis P. Exarchos (University of Ioannina, Greece ), Athanasios Papadopoulos (University of Ioannina, Greece )and Dimitrios I. Fotiadis (University of Ioannina, Greece )
DOI: 10.4018/978-1-60566-314-2.ch024

Purchase

View Nonlinear Ultrasound Radiation-Force Elastography on the publisher's website for pricing and purchasing information.

Abstract

“Elastography” or “elasticity imaging” can be defined as the science and methodology of estimating the mechanical properties of a medium (including soft tissue). In this chapter, an overview of elastography and its relation to tissue pathology will be presented. The basic principles of the static and dynamic methods will be described with special emphasis on the dynamic methods that rely on the acoustic radiation force of ultrasound. Of interest are the low-frequency narrowband shear waves that can be generated by a modulated radiation force produced by the interference of two continuous-wave (CW) ultrasound beams of slightly different frequencies. The advantages of using narrowband shear waves to estimate the viscoelastic properties of tissue will be discussed. Furthermore, an implementation of the inverse-problem approach will be presented and it will be shown how harmonic maps of the local shear modulus and viscosity can be reconstructed based on both the fundamental and higher-harmonic components of the propagated narrowband shear waves.

Related Content

Julia Zimmer, Elisa Degenkolbe, Britt Wildemann, Petra Seemann. © 2013. 30 pages.
George I. Lambrou, Maria Adamaki, Apostolos Zaravinos. © 2013. 22 pages.
Svetoslav Nikolov, Mukhtar Ullah, Momchil Nenov, Julio Vera Gonzalez, Peter Raasch, Olaf Wolkenhauer. © 2013. 23 pages.
Ana M. Sotoca, Michael Weber, Everardus J. J. van Zoelen. © 2013. 19 pages.
Franz Ricklefs, Sonja Schrepfer. © 2013. 16 pages.
Sonja Schallenberg, Cathleen Petzold, Julia Riewaldt, Karsten Kretschmer. © 2013. 25 pages.
Ali Mobasheri. © 2013. 32 pages.
Body Bottom