IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

SSIM-Based Distortion Estimation for Optimized Video Transmission over Inherently Noisy Channels

SSIM-Based Distortion Estimation for Optimized Video Transmission over Inherently Noisy Channels
View Sample PDF
Author(s): Arun Sankisa (Northwestern University, USA), Katerina Pandremmenou (University of Ioannina, Greece), Peshala V. Pahalawatta (AT&T, Inc., USA), Lisimachos P. Kondi (University of Ioannina, Greece)and Aggelos K. Katsaggelos (Northwestern University, USA)
Copyright: 2017
Pages: 20
Source title: Biometrics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-0983-7.ch028

Purchase

View SSIM-Based Distortion Estimation for Optimized Video Transmission over Inherently Noisy Channels on the publisher's website for pricing and purchasing information.

Abstract

The authors present two methods for examining video quality using the Structural Similarity (SSIM) index: Iterative Distortion Estimate (IDE) and Cumulative Distortion using SSIM (CDSSIM). In the first method, three types of slices are iteratively reconstructed frame-by-frame for three different combinations of packet loss and the resulting distortions are combined using their probabilities to give the total expected distortion. In the second method, a cumulative measure of the overall distortion is computed by summing the inter-frame propagation impact to all frames affected by a slice loss. Furthermore, the authors develop a No-Reference (NR) sparse regression framework for predicting the CDSSIM metric to circumvent the real-time computational complexity in streaming video applications. The two methods are evaluated in resource allocation and packet prioritization schemes and experimental results show improved performance and better end-user quality. The accuracy of the predicted CDSSIM values is studied using standard performance measures and a Quartile-Based Prioritization (QBP) scheme.

Related Content

Ajay Rawat, Shivani Gambhir. © 2017. 19 pages.
Abhijit Chandra, Srideep Maity. © 2017. 15 pages.
Swanirbhar Majumder, Saurabh Pal. © 2017. 26 pages.
Fouad Farouk Jabri. © 2017. 32 pages.
Francisco Pacheco Andrade, Teresa Coelho Moreira. © 2017. 13 pages.
Swanirbhar Majumder, Smita Majumder. © 2017. 31 pages.
Yuanfang Guo, Oscar C. Au, Ketan Tang. © 2017. 20 pages.
Body Bottom