IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Stochastic Optimization of Manufacture Systems by Using Markov Decision Processes

Stochastic Optimization of Manufacture Systems by Using Markov Decision Processes
View Sample PDF
Author(s): Gilberto Pérez Lechuga (Universidad Autónoma del Estado de Hidalgo, Mexico), Francisco Venegas Martínez (Instituto Politécnico Nacional, Mexico)and Elvia Pérez Ramírez (Universidad Nacional Autónoma de México, Mexico)
Copyright: 2016
Pages: 24
Source title: Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics
Source Author(s)/Editor(s): Pandian Vasant (University of Technology Petronas, Malaysia), Gerhard-Wilhelm Weber (Middle East Technical University, Turkey)and Vo Ngoc Dieu (Ho Chi Minh City University of Technology, Vietnam)
DOI: 10.4018/978-1-4666-9644-0.ch007

Purchase

View Stochastic Optimization of Manufacture Systems by Using Markov Decision Processes on the publisher's website for pricing and purchasing information.

Abstract

In real-world most of manufacturing systems are large, complex, and subject to uncertainty. This is mainly due to events as random demands, breakdowns, repairs of production machines, setup and cycle times, inventory fluctuations and more. If items move too quickly, workers may work too hard. If items move too slowly, workers may have great leisure times. However, must make decisions here and now regarding the operation of the system optimally and quickly. In practice, these decisions are based on recent statistics of the system behavior, in the experience of the analyst and the urgency of the solution. In this chapter, we present a real problem associated with the production of individual parts in metalworking industry for the refrigerators production. We develop a model based on the Markov Decision Process to study the dynamics of the trajectory of end products in a manufacturing line that works by process. Then, we propose a measure of the average production rate of the line by using the Monte Carlo method. We illustrate our proposal using a numerical example with real data obtained in situ.

Related Content

Pawan Kumar, Mukul Bhatnagar, Sanjay Taneja. © 2024. 26 pages.
Kapil Kumar Aggarwal, Atul Sharma, Rumit Kaur, Girish Lakhera. © 2024. 19 pages.
Mohammad Kashif, Puneet Kumar, Sachin Ghai, Satish Kumar. © 2024. 15 pages.
Manjit Kour. © 2024. 13 pages.
Sanjay Taneja, Reepu. © 2024. 19 pages.
Jaspreet Kaur, Ercan Ozen. © 2024. 28 pages.
Hayet Kaddachi, Naceur Benzina. © 2024. 25 pages.
Body Bottom