IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Non-Conventional Feedstock and Technologies for Biodiesel Production

Non-Conventional Feedstock and Technologies for Biodiesel Production
View Sample PDF
Author(s): Edith Martinez-Guerra (Mississippi State University, USA), Tapaswy Muppaneni (Arizona State University, USA), Veera Gnaneswar Gude (Mississippi State University, USA)and Shuguang Deng (Arizona State University, USA)
Copyright: 2018
Pages: 23
Source title: Advanced Solid Catalysts for Renewable Energy Production
Source Author(s)/Editor(s): Sergio González-Cortés (Oxford University, UK)and Freddy Emilio Imbert (Univsersidad de Los Andes, Venezuela)
DOI: 10.4018/978-1-5225-3903-2.ch004

Purchase

View Non-Conventional Feedstock and Technologies for Biodiesel Production on the publisher's website for pricing and purchasing information.

Abstract

Increased consumption and energy security issues have led many developed and developing countries to seek methods to produce alternative fuels. Biodiesel is one such high-density alternative fuel that can increase the longevity of transportation fuels. Biodiesel can be produced from a wide range of feedstock using simple process schemes. In the past, edible oils were used as feedstock for biodiesel fuel production; however, use of non-traditional feed stock like waste cooking oil, non-edible oils, animal fats, and algae can make biodiesel production a sustainable process. The high free fatty acids content in the feedstock, longer reaction rates, high energy consumption, and the catalysts used in the conversion process pose some limitations for current biodiesel production. These limitations can be addressed by developing novel process techniques such as microwaves and ultrasound and by developing non-catalytic transesterification methods. Enhancing byproduct recovery seems to be an important strategy to improve the energy footprint and economics of current biodiesel production.

Related Content

Daniel A. Beysens, Yves Garrabos, Bernard Zappoli. © 2021. 31 pages.
Sakir Amiroudine. © 2021. 23 pages.
Lin Chen. © 2021. 57 pages.
Victor Emelyanov, Alexander Gorbunov, Andrey Lednev. © 2021. 49 pages.
Nitesh Kumar, Dipankar Narayan Basu, Lin Chen. © 2021. 22 pages.
Kazuhiro Matsuda, Masanori Inui. © 2021. 35 pages.
Lin Chen. © 2021. 51 pages.
Body Bottom