IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Generalized TCP Fairness Control Method for Multiple-Host Concurrent Communications in Elastic WLAN System Using Raspberry Pi Access Point

A Generalized TCP Fairness Control Method for Multiple-Host Concurrent Communications in Elastic WLAN System Using Raspberry Pi Access Point
View Sample PDF
Author(s): Rahardhita Widyatra Sudibyo (Okayama University, Japan), Nobuo Funabiki (Okayama University, Japan), Minoru Kuribayashi (Okayama University, Japan), Kwenga Ismael Munene (Okayama University, Japan), Hendy Briantoro (Okayama University, Japan), Md. Manowarul Islam (Jagannath University, Bangladesh)and Wen-Chung Kao (National Taiwan Normal University, Taiwan)
Copyright: 2020
Volume: 11
Issue: 2
Pages: 23
Source title: International Journal of Mobile Computing and Multimedia Communications (IJMCMC)
Editor(s)-in-Chief: Agustinus Waluyo (Monash University, Australia)
DOI: 10.4018/IJMCMC.2020040102

Purchase


Abstract

The IEEE802.11n wireless local-area network (WLAN) has been widely adopted due to the flexible coverage and lower installation cost. However, the TCP throughput unfairness was detected when multiple hosts concurrently communicate with a single access-point (AP). Previously, the authors proposed the TCP fairness control method for only two hosts in the elastic WLAN system using Raspberry Pi AP, which dynamically adapts the topology according to the traffic demand. The delay is introduced in the packet transmission to the faster host from the AP, which is optimized by the PI feedback control such that the measured throughput becomes equal between the hosts. In this paper, the authors proposed a generalization of this method for any number of hosts by newly introducing the target throughput as the equal goal among the hosts. It is dynamically updated using the measured throughputs. The effectiveness of the proposal is verified through experiments using the elastic WLAN system testbed with one AP and up to four hosts.

Related Content

Wanqiao Wang, Jian Su, Hui Zhang, Luyao Guan, Qingrong Zheng, Zhuofan Tang, Huixia Ding. © 2024. 16 pages.
. © 2024.
Xinhong You, Pengping Zhang, Minglin Liu, Lingqi Lin, Shuai Li. © 2023. 18 pages.
Nan Zhao, Jiaye Wang, Bo Jin, Ru Wang, Minghu Wu, Yu Liu, Lufeng Zheng. © 2023. 17 pages.
Tongyao Nie, Xinguang Lv. © 2023. 14 pages.
Ali Bonyadi Naeini, Ali Golbazi Mahdipour, Rasam Dorri. © 2023. 24 pages.
Agnitè Maxim Wilfrid Straiker Edoh, Tahirou Djara, Abdou-Aziz Sobabe Ali Tahirou, Antoine Vianou. © 2023. 16 pages.
Body Bottom