IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

An Analysis of a Wind Turbine-Generator System in the Presence of Stochasticity and Fokker-Planck Equations

An Analysis of a Wind Turbine-Generator System in the Presence of Stochasticity and Fokker-Planck Equations
View Sample PDF
Author(s): Ravish Himmatlal Hirpara (S.V. National Institute of Technology (SVNIT), Surat, India)and Shambhu Nath Sharma (S.V. National Institute of Technology (SVNIT), Surat, India)
Copyright: 2020
Volume: 9
Issue: 1
Pages: 26
Source title: International Journal of System Dynamics Applications (IJSDA)
Editor(s)-in-Chief: Ahmad Taher Azar (College of Computer & Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia & Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt)
DOI: 10.4018/IJSDA.2020010102

Purchase

View An Analysis of a Wind Turbine-Generator System in the Presence of Stochasticity and Fokker-Planck Equations on the publisher's website for pricing and purchasing information.

Abstract

In power systems dynamics and control literature, theoretical and practical aspects of the wind turbine-generator system have received considerable attentions. The evolution equation of the induction machine encompasses a system of three first-order differential equations coupled with two algebraic equations. After accounting for stochasticity in the wind speed, the wind turbine-generator system becomes a stochastic system. That is described by the standard and formal Itô stochastic differential equation. Note that the Itô process is a strong Markov process. The Itô stochasticity of the wind speed is attributed to the Markov modeling of atmospheric turbulence. The article utilizes the Fokker-Planck method, a mathematical stochastic method, to analyse the noise-influenced wind turbine-generator system by doing the following: (i) the authors develop the Fokker-Planck model for the stochastic power system problem considered here; (ii) the Fokker-Planck operator coupled with the Kolmogorov backward operator are exploited to accomplish the noise analysis from the estimation-theoretic viewpoint.

Related Content

Trung-Nghia Phung, Duc-Binh Nguyen, Ngoc-Phuong Pham. © 2024. 16 pages.
Kanokwan Singha, Parthana Parthanadee, Ajchara Kessuvan, Jirachai Buddhakulsomsiri. © 2024. 14 pages.
Piyanee Akkawuttiwanich, Pisal Yenradee, Narudh Cheramakara. © 2024. 26 pages.
Waranyoo Thippo, Chorkaew Jaturanonda, Sorawit Yaovasuwanchai, Charoenchai Khompatraporn, Teeradej Wuttipornpun, Kulwara Meksawan. © 2024. 28 pages.
Porferio Almerino Jr., Marilou Martinez, Rogelio Sala Jr., Kent Maningo, Lourdes Garciano, Christine Catyong, Marvin Guinocor, Gerly Alcantara, John de Vera, Veronica Calasang, Randy Mangubat, Larry Peconcillo Jr., Emerson Peteros, Charldy Wenceslao, Rica Villarosa, Lanndon Ocampo. © 2024. 23 pages.
Porntip Junsang, Chorkaew Jaturanonda, Teeradej Wuttipornpun, Mayurachat Watcharejyothin. © 2023. 25 pages.
Supanat Sukviboon, Pisal Yenradee. © 2023. 23 pages.
Body Bottom