IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Effective Integration of Reliable Routing Mechanism and Energy Efficient Node Placement Technique for Low Power IoT Networks

Effective Integration of Reliable Routing Mechanism and Energy Efficient Node Placement Technique for Low Power IoT Networks
View Sample PDF
Author(s): P. Sarwesh (National Institute of Technology Karnataka, Mangalore, India), N. Shekar V. Shet (National Institute of Technology Karnataka, Mangalore, India) and K. Chandrasekaran (National Institute of Technology Karnataka, Mangalore, India)
Copyright: 2017
Volume: 9
Issue: 4
Pages: 20
Source title: International Journal of Grid and High Performance Computing (IJGHPC)
Editor(s)-in-Chief: Emmanuel Udoh (Sullivan University, USA), Ching-Hsien Hsu (Asia University, Taiwan) and Mohammad Khan (East Tennessee State University, USA)
DOI: 10.4018/IJGHPC.2017100102

Purchase


Abstract

Internet of Things (IoT) is the emerging technology that links physical devices (sensor devices) with cyber systems and allows global sharing of information. In IoT applications, devices are operated by battery power and low power radio links, which are constrained by energy. In this paper, node placement technique and routing mechanism are effectively integrated in single network architecture to prolong the lifetime of IoT network. In proposed network architecture, sensor node and relay node are deployed, sensor nodes are responsible for collecting the environmental data and relay nodes are responsible for data aggregation and path computation. In node placement technique, densities of relay nodes are varied based on traffic area, to prevent energy hole problem. In routing technique, energy efficient and reliable path computation is done to reduce number of re transmissions. To adopt IoT scenario, we included IEEE 802.15.4 PHY/MAC radio and IPv6 packet structure in proposed network architecture. Proposed work result shows, proposed architecture prolongs network lifetime.

Related Content

Bouaita Riad, Zitouni Abdelhafid, Maamri Ramdane. © 2020. 18 pages.
Asefeh Asemi, Fezzeh Ebrahimi. © 2020. 17 pages.
Bhim Sain Singla, Himanshu Aggarwal. © 2020. 15 pages.
Salma Azzouzi, Sara Hsaini, My El Hassan Charaf. © 2020. 17 pages.
Danqing Feng, Zhibo Wu, Decheng Zuo, Zhan Zhang. © 2020. 17 pages.
Nancy Victor, Daphne Lopez. © 2020. 16 pages.
Arun Prakash Agrawal, Ankur Choudhary, Arvinder Kaur. © 2020. 15 pages.
Body Bottom