IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Comparative Review of Various Machine Learning Approaches for Improving the Performance of Stego Anomaly Detection

A Comparative Review of Various Machine Learning Approaches for Improving the Performance of Stego Anomaly Detection
View Sample PDF
Author(s): Hemalatha Jeyaprakash (Thiagarajar College of Engineering, India), KavithaDevi M. K. (Thiagarajar College of Engineering, India)and Geetha S. (VIT University, India)
Copyright: 2022
Pages: 21
Source title: Research Anthology on Machine Learning Techniques, Methods, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-6291-1.ch052

Purchase


Abstract

In recent years, steganalyzers are intelligently detecting the stego images with high detection rate using high dimensional cover representation. And so the steganographers are working towards this issue to protect the cover element dependency and to protect the detection of hiding secret messages. Any steganalysis algorithm may achieve its success in two ways: 1) extracting the most sensitive features to expose the footprints of message hiding; 2) designing or building an effective classifier engine to favorably detect the stego images through learning all the stego sensitive features. In this chapter, the authors improve the stego anomaly detection using the second approach. This chapter presents a comparative review of application of the machine learning tools for steganalysis problem and recommends the best classifier that produces a superior detection rate.

Related Content

Princy Pappachan, Sreerakuvandana, Mosiur Rahaman. © 2024. 26 pages.
Winfred Yaokumah, Charity Y. M. Baidoo, Ebenezer Owusu. © 2024. 23 pages.
Mario Casillo, Francesco Colace, Brij B. Gupta, Francesco Marongiu, Domenico Santaniello. © 2024. 25 pages.
Suchismita Satapathy. © 2024. 19 pages.
Xinyi Gao, Minh Nguyen, Wei Qi Yan. © 2024. 13 pages.
Mario Casillo, Francesco Colace, Brij B. Gupta, Angelo Lorusso, Domenico Santaniello, Carmine Valentino. © 2024. 30 pages.
Pratyay Das, Amit Kumar Shankar, Ahona Ghosh, Sriparna Saha. © 2024. 32 pages.
Body Bottom