The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
A Journey From Neural Networks to Deep Networks: Comprehensive Understanding for Deep Learning
Abstract
The chapter is about deep learning fundaments and its recent trends. The chapter mentions many advanced applications and deep learning models and networks to easily solve those applications in a very smart way. Discussion of some techniques for computer vision problem and how to solve with deep learning approach are included. After taking fundamental knowledge of the background theory, one can create or solve applications. The current state-of-the-art of deep learning for education, healthcare, agriculture, industrial, organizations, and research and development applications are very fast growing. The chapter is about types of learning in a deep learning approach, what kind of data set one can be required, and what kind of hardware facility is required for the particular complex problem. For unsupervised learning problems, Deep learning algorithms have been designed, but in the same way Deep learning is also solving the supervised learning problems for a wide variety of tasks.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|