IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

An Insight Into Deep Learning Architectures

An Insight Into Deep Learning Architectures
View Sample PDF
Author(s): Nishu Garg (VIT University, India), Nikhitha P (VIT University, India) and B. K. Tripathy (VIT University, India)
Copyright: 2019
Pages: 8
Source title: Advanced Methodologies and Technologies in Library Science, Information Management, and Scholarly Inquiry
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-5225-7659-4.ch023

Purchase

View An Insight Into Deep Learning Architectures on the publisher's website for pricing and purchasing information.

Abstract

Information retrieval can be visualized as the extraction of the desired information from the flooded resources that spread over world wide web. Image retrieval is the fundamental and critical problem that arises in the retrieval activities. In this regard, it is considered to be a challenging task which requires utmost care. Diverse characteristics of data such as noisy, heterogeneity impose a great barrier over image retrieval applications. This chapter aims to come up with a state-of-the-art approach for overcoming these problems by clubbing together widely recognized deep architecture along with natural language processing. This novel design methodology utilizes the latent query features, deep belief network, restricted Boltzmann machine for learning tasks. This collaborative work can be used to reduce the epoch in the learning periods whereas the rest of the methods fail to achieve the constraints.

Related Content

Ramakrishnan Ramanathan, Lok Wan Lorraine Ko, Hsin Chen, Usha Ramanathan. © 2020. 12 pages.
Debra N. Weiss-Randall. © 2020. 14 pages.
Jayne Cubbage. © 2020. 18 pages.
Japhet Eke Lawrence. © 2020. 20 pages.
Amir Manzoor. © 2020. 28 pages.
Shantanu Pal. © 2020. 19 pages.
Martha Garcia-Murillo, Moinul Zaber, Marcio Wohlers de Almeida. © 2020. 22 pages.
Body Bottom