IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Application of Supercritical Carbon Dioxide for Solar Water Heater

Application of Supercritical Carbon Dioxide for Solar Water Heater
View Sample PDF
Author(s): Yuhiro Iwamoto (Nagoya Institute of Technology, Japan)and Hiroshi Yamaguchi (Doshisha University, Japan)
Copyright: 2021
Pages: 18
Source title: Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems
Source Author(s)/Editor(s): Lin Chen (Institute of Engineering Thermophysics, Chinese Academy of Sciences, China & University of Chinese Academy of Sciences, China)
DOI: 10.4018/978-1-7998-5796-9.ch010

Purchase

View Application of Supercritical Carbon Dioxide for Solar Water Heater on the publisher's website for pricing and purchasing information.

Abstract

For supercritical CO2, a small change in temperature or pressure can result in large change in density, especially in the state close to the critical point. The large change in density can easily induce the natural convective flow. In this chapter, a solar water heater using supercritical CO2 which is originally designed and constructed will be introduced. The solar water heater is a closed loop system with main components of an evacuated solar collector and a heat exchanger. The working fluid of CO2 is naturally driven by the large change in density with absorbing and transporting heat in the solar collector. And the heat energy (hot water) is produced by exchanging the transferred heat with water in the heat exchanger. This chapter will describe the typical system operation and performance at different season and climates.

Related Content

Daniel A. Beysens, Yves Garrabos, Bernard Zappoli. © 2021. 31 pages.
Sakir Amiroudine. © 2021. 23 pages.
Lin Chen. © 2021. 57 pages.
Victor Emelyanov, Alexander Gorbunov, Andrey Lednev. © 2021. 49 pages.
Nitesh Kumar, Dipankar Narayan Basu, Lin Chen. © 2021. 22 pages.
Kazuhiro Matsuda, Masanori Inui. © 2021. 35 pages.
Lin Chen. © 2021. 51 pages.
Body Bottom