The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Automatically Identifying Predictor Variables for Stock Return Prediction
Abstract
Real-world financial systems are often nonlinear, do not follow any regular probability distribution, and comprise a large amount of financial variables. Not surprisingly, it is hard to know which variables are relevant to the prediction of the stock return based on data collected from such a system. In this chapter, we address this problem by developing a technique consisting of a top-down part using an artificial Higher Order Neural Network (HONN) model and a bottom-up part based on a Bayesian Network (BN) model to automatically identify predictor variables for the stock return prediction from a large financial variable set. Our study provides an operational guidance for using HONN and BN in selecting predictor variables from a large amount of financial variables to support the prediction of the stock return, including the prediction of future stock return value and future stock return movement trends.
Related Content
Arunaben Prahladbhai Gurjar, Shitalben Bhagubhai Patel.
© 2022.
30 pages.
|
Meghna Babubhai Patel, Jagruti N. Patel, Upasana M. Bhilota.
© 2022.
10 pages.
|
Vo Ngoc Phu, Vo Thi Ngoc Tran.
© 2022.
27 pages.
|
Steven Walczak.
© 2022.
17 pages.
|
Priyanka P. Patel, Amit R. Thakkar.
© 2022.
26 pages.
|
Vo Ngoc Phu, Vo Thi Ngoc Tran.
© 2022.
34 pages.
|
Sarat Chandra Nayak, Subhranginee Das, Bijan Bihari Misra.
© 2022.
20 pages.
|
|
|