IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Basic Principles and Applications of Microarrays in Medicine

Basic Principles and Applications of Microarrays in Medicine
View Sample PDF
Author(s): Andriani Daskalaki (Max Planck Institute of Molecular Genetics, Germany)and Athina A. Lazakidou (University of Piraeus, Greece)
Copyright: 2006
Pages: 8
Source title: Handbook of Research on Informatics in Healthcare and Biomedicine
Source Author(s)/Editor(s): Athina A. Lazakidou (University of Peloponnese, Greece)
DOI: 10.4018/978-1-59140-982-3.ch046

Purchase

View Basic Principles and Applications of Microarrays in Medicine on the publisher's website for pricing and purchasing information.

Abstract

The simultaneous expression of a large number of genes is a critical component of normal growth and development, and the maintenance of health. Microarray technology is used to understand fundamental aspects of growth and development, as well as to explore the underlying genetic causes of many human diseases. Systematic analysis of microarray data will yield insight into molecular biological processes and the functions of thousands of gene products in parallel. This approach allows for better understanding in cellular signaling, disease classification, diagnosis, and prognosis. Microarrays allow scientists to analyze the expression of many genes in a single experiment quickly and efficiently. One important goal of computational analysis of microarrays is to extract clues from microarray data and translate the information into biological understanding diseases in medicine and dentistry. There are different platforms or types of DNA microarrays that are commercially available: Glass DNA microarrays and high-density oligonucleotide microarrays. DNA microarray experiments generate large quantities of genome-wide data. To extract useful information from expression profiles, computational tools that compute, statistically validate and display data can be used. An important step in the computation of microarray data is normalization. The purpose of the normalization prozess is to identify and remove the effects of systematic variation in the measured fluorescence intensities other than differential expressions. There are different methods for the normalization of data: total intensity normalization, regression normalization, normalization using ratio statistics, and variance stabilization (VSN). A major goal of microarray data analysis is to identify differentially expressed genes. Selecting marker genes is an important issue for disease classification based on gene expression data.

Related Content

David Edson Ribeiro, Valter Augusto de Freitas Barbosa, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 15 pages.
Juliana Carneiro Gomes, Maíra Araújo de Santana, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 12 pages.
Maíra Araújo de Santana, Jessiane Mônica Silva Pereira, Clarisse Lins de Lima, Maria Beatriz Jacinto de Almeida, José Filipe Silva de Andrade, Thifany Ketuli Silva de Souza, Rita de Cássia Fernandes de Lima, Wellington Pinheiro dos Santos. © 2021. 19 pages.
Jessiane Mônica Silva Pereira, Maíra Araújo de Santana, Clarisse Lins de Lima, Rita de Cássia Fernandes de Lima, Sidney Marlon Lopes de Lima, Wellington Pinheiro dos Santos. © 2021. 25 pages.
Adriel dos Santos Araujo, Roger Resmini, Maira Beatriz Hernandez Moran, Milena Henriques de Sousa Issa, Aura Conci. © 2021. 35 pages.
Abir Baâzaoui, Walid Barhoumi. © 2021. 21 pages.
Marcus Costa de Araújo, Luciete Alves Bezerra, Kamila Fernanda Ferreira da Cunha Queiroz, Nadja A. Espíndola, Ladjane Coelho dos Santos, Francisco George S. Santos, Rita de Cássia Fernandes de Lima. © 2021. 44 pages.
Body Bottom