IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Classification of Staphylococcus Aureus FabI Inhibitors by Machine Learning Techniques

Classification of Staphylococcus Aureus FabI Inhibitors by Machine Learning Techniques
View Sample PDF
Author(s): Vinicius Gonçalves Maltarollo (Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil)
Copyright: 2022
Pages: 16
Source title: Research Anthology on Machine Learning Techniques, Methods, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-6291-1.ch017

Purchase

View Classification of Staphylococcus Aureus FabI Inhibitors by Machine Learning Techniques on the publisher's website for pricing and purchasing information.

Abstract

Enoyl-acyl carrier protein reductase (FabI) is a key enzyme in the fatty acid metabolism of gram-positive bacteria and is considered a potential target for new antibacterial drugs development. Indeed, triclosan is a widely employed antibacterial and AFN-1252 is currently under phase-II clinical trials, both are known as FabI inhibitors. Nowadays, there is an urgent need for new drug discovery due to increasing antibacterial resistance. In the present study, classification models using machine learning techniques were generated to distinguish SaFabI inhibitors from non-inhibitors successfully (e.g., Mathews correlation coefficient values equal to 0.837 and 0.789 calculated with internal and external validations). The interpretation of a selected model indicates that larger compounds, number of N atoms and the distance between central amide and naphthyridinone ring are important to biological activity, corroborating previous studies. Therefore, these obtained information and generated models can be useful for design/discovery of novel bioactive ligands as potential antibacterial agents.

Related Content

Princy Pappachan, Sreerakuvandana, Mosiur Rahaman. © 2024. 26 pages.
Winfred Yaokumah, Charity Y. M. Baidoo, Ebenezer Owusu. © 2024. 23 pages.
Mario Casillo, Francesco Colace, Brij B. Gupta, Francesco Marongiu, Domenico Santaniello. © 2024. 25 pages.
Suchismita Satapathy. © 2024. 19 pages.
Xinyi Gao, Minh Nguyen, Wei Qi Yan. © 2024. 13 pages.
Mario Casillo, Francesco Colace, Brij B. Gupta, Angelo Lorusso, Domenico Santaniello, Carmine Valentino. © 2024. 30 pages.
Pratyay Das, Amit Kumar Shankar, Ahona Ghosh, Sriparna Saha. © 2024. 32 pages.
Body Bottom