IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Computationally Efficient and Effective Machine Learning Model Using Time Series Data in Different Prediction Problems

Computationally Efficient and Effective Machine Learning Model Using Time Series Data in Different Prediction Problems
View Sample PDF
Author(s): Dwiti Krishna Bebarta (Gayatri Vidya Parishad College of Engineering for Women, India)and Birendra Biswal (Gayatri Vidya Parishad College of Engineering (Autonomous), India)
Copyright: 2021
Pages: 16
Source title: Handbook of Research on Automated Feature Engineering and Advanced Applications in Data Science
Source Author(s)/Editor(s): Mrutyunjaya Panda (Utkal University, India)and Harekrishna Misra (Institute of Rural Management, Anand, India)
DOI: 10.4018/978-1-7998-6659-6.ch012

Purchase


Abstract

Automated feature engineering is to build predictive models that are capable of transforming raw data into features, that is, creation of new features from existing ones on various datasets to create meaningful features and examining their effect on planned model performances on various parameters like accuracy, efficiency, and prevent data leakage. So the challenges for experts are to plan computationally efficient and effective machine, learning-based predictive models. This chapter will provide an imminent to the important intelligent techniques that could be utilized to enhance predictive analytics by using an advanced form of the predictive model. A computationally efficient and effective machine learning model using functional link artificial neural network (FLANN) is discussed to design for predicting the business needs with a high degree of accuracy for the traders or investors. The performance of the models using FLANN is encouraging when scientifically analyzed the experimental results of the model using different statistical analyses.

Related Content

Princy Pappachan, Sreerakuvandana, Mosiur Rahaman. © 2024. 26 pages.
Winfred Yaokumah, Charity Y. M. Baidoo, Ebenezer Owusu. © 2024. 23 pages.
Mario Casillo, Francesco Colace, Brij B. Gupta, Francesco Marongiu, Domenico Santaniello. © 2024. 25 pages.
Suchismita Satapathy. © 2024. 19 pages.
Xinyi Gao, Minh Nguyen, Wei Qi Yan. © 2024. 13 pages.
Mario Casillo, Francesco Colace, Brij B. Gupta, Angelo Lorusso, Domenico Santaniello, Carmine Valentino. © 2024. 30 pages.
Pratyay Das, Amit Kumar Shankar, Ahona Ghosh, Sriparna Saha. © 2024. 32 pages.
Body Bottom