IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Computationally Improved Control Policy for FMS Using Crucial Marking/Transition-Separation Instances

A Computationally Improved Control Policy for FMS Using Crucial Marking/Transition-Separation Instances
View Sample PDF
Author(s): Yi-Sheng Huang (National Ilan University, Taiwan, R.O.C.)and Yen-Liang Pan (Air Force Academy, Taiwan, R.O.C.)
Copyright: 2013
Pages: 22
Source title: Formal Methods in Manufacturing Systems: Recent Advances
Source Author(s)/Editor(s): Zhiwu Li (Xidian University, People’s Republic of China)and Abdulrahman M. Al-Ahmari (King Saud University, Saudi Arabia)
DOI: 10.4018/978-1-4666-4034-4.ch004

Purchase

View A Computationally Improved Control Policy for FMS Using Crucial Marking/Transition-Separation Instances on the publisher's website for pricing and purchasing information.

Abstract

Deadlock prevention, deadlock detection, and deadlock avoidance strategies are used to solve the deadlock problems of Flexible Manufacturing Systems (FMS). The theory of regions has been recognized as the unique method for obtaining maximally permissive controllers in the existing literature. All legal and live maximal behavior of a Petri net model can be preserved by using a Marking/Transition-Separation Instance (MTSI). However, obtaining all sets of MTSIs is an extremely time consuming problem. This work proposes Crucial Marking/Transition-Separation Instances (CMTSIs) that allow designers to employ few MTSIs to deal with deadlocks. The advantage of the proposed policy is that a maximally permissive controller can be obtained with drastically reduced computation. Experimental results, by varying the markings of given net structures, indicate that it is the most efficient policy to obtain optimal controllers among existing methods based on the theory of regions.

Related Content

Sandhya Avasthi, Tanushree Sanwal, Shivani Sharma, Shweta Roy. © 2023. 23 pages.
Subha Karumban, Shouvik Sanyal, Madan Mohan Laddunuri, Vijayan Dhanasingh Sivalinga, Vidhya Shanmugam, Vijay Bose, Mahesh B. N., Ramakrishna Narasimhaiah, Dhanabalan Thangam, Satheesh Pandian Murugan. © 2023. 17 pages.
Aditya Saxena, Devansh Chauhan, Shilpi Sharma. © 2023. 26 pages.
Eduardo José Villegas-Jaramillo, Mauricio Orozco-Alzate. © 2023. 33 pages.
Revathi A., Poonguzhali S.. © 2023. 18 pages.
Indu Malik, Anurag Singh Baghel. © 2023. 18 pages.
Shanu Sharma, Tushar Chand Kapoor, Misha Kakkar, Rishi Kumar. © 2023. 24 pages.
Body Bottom