IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Deadlock Control in Generalized Petri Nets

Deadlock Control in Generalized Petri Nets
View Sample PDF
Author(s): Mi Zhao (Shihezi University, China)and Yifan Hou (Xidian University, China)
Copyright: 2013
Pages: 24
Source title: Formal Methods in Manufacturing Systems: Recent Advances
Source Author(s)/Editor(s): Zhiwu Li (Xidian University, People’s Republic of China)and Abdulrahman M. Al-Ahmari (King Saud University, Saudi Arabia)
DOI: 10.4018/978-1-4666-4034-4.ch014

Purchase

View Deadlock Control in Generalized Petri Nets on the publisher's website for pricing and purchasing information.

Abstract

This chapter proposes a number of deadlock prevention polices for a class of generalized Petri nets, namely G-systems, which is usually considered to be the most generalized Petri nets that can model Flexible Manufacturing Systems (FMSs) with machining, assembly, and disassembly operations. First, a deadlock prevention policy based on elementary siphons theory is presented, which indicates that structural complexity and behavioral permissiveness can be improved effectively. In order to reduce the computational complexity, a Mixed Integer Programming (MIP)-based deadlock detection approach is proposed, then two deadlock control polices combined with MIP method are introduced. Finally, comparison among deadlock prevention policies reported in this chapter is done in terms of structural complexity, behavioral permissiveness, and computational complexity of the resulting supervisor through a typical case study. Importantly, future research directions related to this area are presented at the end of this chapter.

Related Content

Sandhya Avasthi, Tanushree Sanwal, Shivani Sharma, Shweta Roy. © 2023. 23 pages.
Subha Karumban, Shouvik Sanyal, Madan Mohan Laddunuri, Vijayan Dhanasingh Sivalinga, Vidhya Shanmugam, Vijay Bose, Mahesh B. N., Ramakrishna Narasimhaiah, Dhanabalan Thangam, Satheesh Pandian Murugan. © 2023. 17 pages.
Aditya Saxena, Devansh Chauhan, Shilpi Sharma. © 2023. 26 pages.
Eduardo José Villegas-Jaramillo, Mauricio Orozco-Alzate. © 2023. 33 pages.
Revathi A., Poonguzhali S.. © 2023. 18 pages.
Indu Malik, Anurag Singh Baghel. © 2023. 18 pages.
Shanu Sharma, Tushar Chand Kapoor, Misha Kakkar, Rishi Kumar. © 2023. 24 pages.
Body Bottom