IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Design and Implementation of a Step-Traversing Two-Wheeled Robot

Design and Implementation of a Step-Traversing Two-Wheeled Robot
View Sample PDF
Author(s): Huei Ee Yap (Waseda University, Japan)and Shuji Hashimoto (Waseda University, Japan)
Copyright: 2019
Pages: 16
Source title: Rapid Automation: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-8060-7.ch009

Purchase

View Design and Implementation of a Step-Traversing Two-Wheeled Robot on the publisher's website for pricing and purchasing information.

Abstract

In this chapter, the authors present the design and implementation of a step-traversing two-wheeled robot. Their proposed approach aims to extend the traversable workspace of a conventional two-wheeled robot. The nature of the balance problem changes as the robot is in different phases of motion. Maintaining balance with a falling two-wheeled robot is a different problem than balancing on flat ground. Active control of the drive wheels during flight is used to alter the flight of the robot to ensure a safe landing. State dependent feedback controllers are used to control the dynamics of the robot on ground and in air. Relationships between forward velocity, height of step, and landing angle are investigated. A physical prototype has been constructed and used to verify the viability of the authors' control scheme. This chapter discusses the design attributes and hardware specifications of the developed prototype. The effectiveness of the proposed control scheme has been confirmed through experiments on single- and continuous-stepped terrains.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom